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1.0 SUMMARY 
  

Due to the rising cost of launching payloads into outer space and to address the problems 

of aging spacecraft, engineers are designing new vehicles that will reduce turnaround time and 

cost per launch. This activity has led to a large increase in research effors conducted in the field 

of reusable launch vehicles (RLV). Vehicle design is an inherently non-linear, multi physics 

based problem involving continuous, mixed, and integer optimization variables. With the wide 

presence of randomness in these variables, including epistemic, aleatory, and model-form 

uncertainties, uncertainty in the problem must be accounted for in order to accurately quantify 

the systems probability of success. 

 

This research provides valuable tools to the RLV community by incorporating risk-

minimization into the design of a vehicle. This has been accomplished by incorporating 

uncertainty quantification related to the aeroelastic and structural integrity of a launch vehicle, 

with a focus on flutter uncertainties. 

   

 In this research a trajectory optimization was analyzed, from which critical flight points 

along the mission path were identified. To further investigate these critical points, a finite 

element structural and aeroelastic model was created to represent the RLV wing configuration. 

To ensure an accurate wing model, the model was validated based on a frequency and mode 

shape comparison analysis. 
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  Aleatory uncertainty, epistemic uncertainty, and model-form uncertainty quantification 

techniques were explored for their suitability. To minimize risk associated with the variabilities 

in aeroelastic flutter, a reliability-based design optimization is considered in this investigation.  

 

 Three analyses were conducted on the FAST configuration F wing. The first analysis 

includes aleatory uncertainty in structural geometry. The second investigates epistemic 

uncertainty quantification incorporating evidence theory, where uncertainties in atmospheric 

conditions and composite materials were quantified. Finally, a gradient-based reliability design 

optimization was investigated, resulting in a weight reduction and increased structural reliability 

of the RLV’s wing. 

 

 The technical contents of this report are organized in the following manner. Chapter 2 

presents the background information for an RLV. Chapter 3 describes the mission trajectory 

analysis that served as the basis for defining critical aerodynamic loads. Chapter 4 discusses the 

development of the finite element model for the tip-tail FAST configuration F wing. Chapter 5 

demonstrates techniques to quantify aleatory, epistemic and model-form uncertainty. Chapter 6 

investigates reliability-based design optimization. Chapter 7 includes results for aleatory and 

epistemic uncertainty analyses of the FAST vehicle’s wing as well as a reliability-based design 

optimization. The report then closes with Chapter 8 with concluding remarks. 
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2.0 INTRODUCTION  
 
 
 The United States now has an operating mixed fleet of space vehicles comprised of 

reusable space shuttle orbiters and expendable launch vehicles (ELVs). To reduce operational 

costs, launch vehicles must be designed to be reusable. In recent years the United States Air 

Force (USAF) and NASA have conducted ongoing research in the design of reusable launch 

vehicles (RLV) [1 [1][2][3]-[2][3][4][5]6].[6][1]The US Air Force has been developing a reusable launch vehicle 

variously called Micro-X, Hot Eagle, and now FAST (Future Responsive Access to Space 

Technology). Configuration design activities for the FAST launch vehicle demonstrator have 

focused on configurations that have vertical tails on the wing tips as seen in Figure 1. This project 

seeks to develop and mature technologies that will allow development of future military launch 

vehicles that can land to launch another day. 

 
Figure 1: FAST Vehicle Tip-Tail Design 
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 Future space access vehicle designs employ composite materials, thermal protection 

systems, health monitoring hardware, and propellant tanks to make the vehicles fully reusable 

and reliable. With many integrated subsystems, development of future vehicles with high 

reliability and confidence requires investigation of the interaction of multi physics behavior as 

well as optimization and quantification of the risk associated with each subsystem. 

  

 This technical effort with AFRL addresses two aspects of future vehicle design: First the 

work incorporates the vehicle trajectory by meeting the payload requirements at the systems 

level. Second at the subsystem level, this assessment conducts an aeroelastic flutter analysis 

which is used as a baseline to quantify and mitigate the risk in the aeroelastic flutter dynamic 

pressure. Flutter is an important characteristic for uncertainty quantification since this type of 

configuration is more apt to flutter at lower velocities which occur during the vehicles trajectory. 

The important goal of this assessment is to develop a toolbox which can be used to easily 

quantify different types of uncertainties. A spectrum of uncertainty quantification procedures 

must be incorporated in the design toolbox to consider probability distributions, parameter 

intervals, expert opinions, spatial and time-dependent variances, and limited experimental data in 

defining the subcomponent models. Through the use of advanced stochastic expansion 

techniques, the designer is supplied with the risks associated with, each of the selected 

alternatives. Some of the metrics of measure are the probability of failure, reliability, confidence 

bounds, belief plausibility, and sensitivity factors.  
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3.0 MISSION GOALS 
 
 
 The RLV mission goals are to examine how uncertainty propagates through system level 

traits to the subsystem level. The first step of this process is to identify a trajectory that the 

vehicle will follow, to complete a desired mission. In this chapter a trajectory optimization code 

was selected and executed based on the mission requirements of a reusable launch vehicle. 

Critical points along the trajectory were identified and transmitted into more detailed FEA 

simulations in the following chapters. 

3.1 Trajectory Optimization 
 
 
 Trajectory is the path an object follows in order to reach a final destination. There are 

many different types of trajectories the FAST vehicle can travel [7, 8].[7][8] The trajectories can range 

from a downrange mission, where the vehicle launches from one site and lands at another, to a 

rocket-back and return to launch site. To begin vehicle design, a trajectory analysis is needed to 

determine what kind of flight loads the RLV will encounter during the mission. There are many 

codes available to solve trajectory optimization. Several codes include Optimal Trajectories by 

Implicit Simulation (OTIS), Program to Optimize Simulated Trajectories (POST), Graphical 

Environment for Simulation and Optimization/Aerospace Trajectory Optimization Software 

(GESOP/ASTOS), and General Trajectory Simulation (GTS). This research will focus on the 

most widely used and accepted trajectory optimization codes POST and OTIS. 
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3.1.1 POST and OTIS Comparison  
 

 Two trajectory optimization codes commonly accepted in the aerospace community are 

POST and OTIS. POST and OTIS represent the structural models of the launch vehicle with a 

generalized point mass. The programs are able to target and optimize point mass trajectories for 

an assortment of powered or unpowered vehicles.  In a recent journal paper these two trajectory 

optimization codes were compared [9]. Physical and natural phenomenons are modeled and 

calculated the same in both of the optimization programs. In theory each program should 

produce the same results given that they are both searching for an optimum. Any small 

discrepancies in the two optimization codes outputs can be attributed by the different 

mathematical optimizers and algorithms used during the analyses.  

  

 POST employs a gradient-based approach by integrating each point in the trajectory 

equation. During the analysis each point in the trajectory must satisfy all physical laws to move 

to the next point in the trajectory. OTIS has two methods to solve trajectory optimization, like 

POST it also contains a gradient-based approach as well as a collocation method. OTIS’s 

collocation method allows more flexibility by giving the user the ability to choose the trajectory 

nodes and node spacing in the program. In theory an infinite amount of degrees of freedom could 

be examined, rather than the program choosing the points for the user. One drawback to this 

technique may not always produce an actual physical solution to the problem.  

  

 Both programs have a user interface where the optimization parameters are input. OTIS 

requires the user to define the continuity, that can lead to problems with inexperienced users. 
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POST automatically determines the continuity making it a more applicable program to optimize 

the FAST vehicle’s trajectory.  

  

 Although the two programs seem very similar, POST appears to be more user friendly 

and straightforward. POST II was developed from the original POST software starting in 1995 

and was written in FORTAN 77 and C languages [10].  

 

POST II’s optimization procedure consists of: 

-  Inputting the data for all the phases 

-  Initialize equations of motion 

-  Propagating the trajectory until interrupted by the occurrence of the user-specified 

condition for the next event 

- Restart equations of motion with the new inputs 

- Repeat until final event and the post process the data 

  

 POST II can perform optimization targeting with or without inequality constraints, 

unconstraint optimization, and constrained (equal and/or inequality constraints) optimization. 

The program employs finite differencing to calculate the sensitivities of the optimization variable 

with respect to the constraints. The user selects the integration method and initial step size. The 

selection of the integration and step size are an important optimization consideration because it 

can make drastic impact on the computation time. POST II provides an automatic perturbation 

step size controller, although an initial guess is needed, it should make the loss of accuracy much 



8 
 

less than if a wrong perturbation variable was chosen, which can lead to introducing more 

uncertainty in the problem. 

 

3.2 FAST Trajectory Analysis  
  
 

 In this research a trajectory optimization using POST was conducted on a nominal 

rocket-back mission. This type of mission requires the RLV to launch in a vertical position. 

Upon completing the mission the vehicle returns to the launch point and lands horizontally like a 

conventional aircraft, ready to be refueled and launched again in a short turnaround.  

 

 Figure 2 depicts the trajectory plot generated by POST II of the RLV’s trajectory. This 

trajectory will supply essential information to complete finite element analysis at the critical 

points. A user specifies how the vehicle performs and the boundary conditions for a desired 

mission. POST II then solves the optimal trajectory based on the constraints and vehicle 

performance data. Boundary conditions include Mach number, final velocity, altitudes, and 

launch angles. 
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Figure 2: RLV Rocket Back Trajectory Analysis 

 

 The trajectory the RLV travels is explained. The vehicle starts from a vertical launch pad and 

launches. For a short duration, the vehicle continues vertically to reach the desired altitude and Mach 

number that defines the staging point. During this time the vehicle experiences heavy aerodynamic 

loading. For an operational, multi-stage launch vehicle additional stages would be located on the 

reusable booster. This would allow the vehicles to separate and continue on their desired mission. 

The propellant capacities for ascent propellant and rocket-back propellant were allocated to allow the 

vehicle to return to the launch site. After the launch vehicle and payload separates, the vehicles coast 

for a short time allowing them to have enough clearance to cause no damage. At this time the 

reusable booster will then pitch-over to an optimum altitude initiate for the reentry portion of the 
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trajectory. At the apex of the trajectory the vehicle changes orientation to allow for an optimal angle 

of attack (AOA) to reduce the temperatures the vehicle will encounter while entering the Earth’s 

atmosphere. The vehicle then transitions to a maximum range glide altitude during the landing 

stage as it approaches the runway of the landing site.  

 

3.3 FAST Critical Mission Points 

 
 Since the trajectory optimization program only explores the design space with a point 

mass, the performance analysis information obtained cannot be assumed to be exact.  To quantify 

uncertainty of the vehicles performance, a higher fidelity analysis must be utilized using finite 

element analysis (FEA) approaches. Executing finite element analysis on the entire trajectory 

would be extremely computationally expensive. This calls for critical points along the trajectory 

to be recognized and analyzed. Critical points along the trajectory were identified during the 

trajectory, including: lift off, separation of the booster from the payload, the rocket back phase, 

reentry phase, as well as landing. At each of these critical points an assortment of finite element 

analysis techniques can be implemented depending on what scenario the vehicle is encountering, 

resulting in more accurate information for that specific flight point. For example a flutter 

analysis may be necessary at reentry or launching due to the vehicles experience in high dynamic 

pressures, knowing flutter can be affected by dynamic pressure. In contrary a maneuverability 

analysis may be conducted during the booster separation point or apex where the vehicle is 

making precise maneuvers, which may not be physically possible although the optimization 

program provides these as potential paths. These critical points will be analyzed using 

NASTRAN and ASTROS, finite element modeling packages that include aeroelastic analysis.  
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4.0 REUSABLE LAUNCH VEHICLE FINITE ELEMENT 
MODEL DEVELOPMENT 

 
 

 To fully analyze the reusable launch vehicle, representative models and simulations must 

be developed and implemented as tools in the design process. This chapter demonstrates the 

modeling techniques used to capture the RLV’s wing structure as well as incorporating 

aeroelastic flutter analysis.   

 

 The RLV will have a tip-tail configuration presented in Figure 1. These configurations 

have advantages related to aerodynamic effectiveness of the tails during high AOA reentry, since 

they are not shadowed by the body. They also hold operability benefits in that the tails are away from 

the aft end of the vehicle and thus allow easier access to the engines. The tip-tail wings also offer the 

opportunity to mount a payload system on top of the vehicle without interference from the vertical 

tails.  

 

4.1 Structural Model Development 
 

 It is important to be able to identify and quantify modeling errors introduced when 

different fidelity simulations are utilized. While high fidelity analyses generally produce 

solutions most reflective upon the actual scenario, the computational cost associated with these 

simulations can become restrictive within a design environment. Even for relatively simple 

designs, a large number of function evaluations, which in a simulation-based environment 

directly correlates to the number of simulations required and necessary for risk quantification 

and design optimization, are needed. Thus, it is important to be able to utilize lower fidelity 
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simulations where less accurate information is required, and only utilize high fidelity simulations 

in aspects of the design where more exact information is needed, such as using lower fidelity 

simulations in the initial exploration of the design space, and then utilizing the higher fidelity 

models as the design space is reduced. 

  

4.1.1 Reusable Launch Vehicle Wing FEA Structural Model 

 
 
 Figure 3 is a high fidelity structural model developed by a highly regarded aircraft design 

company. This model was used as a baseline to create the wing structural model that will be used 

in the uncertainty quantification design process.  

 

Figure 3: High Fidelity RLV Structural Model  

 
The RLV’s wing model was modeled based on the parameters found in Table 1. In this 

model, membrane elements with bending capability are used to represent the wing skins, shear 

panels represent the spars and ribs, and rod elements represent the posts. The center of gravity is 

maintained by adding non structured mass along the line of center of gravity axis.  
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Table 1: RLV Wing Parameters 

Span 21.8 ft 
Root Chord 18.2 ft 
Tip Chord 6.1 ft 
Mean Chord 13.1 ft 
Aspect Ratio  1.8 
Taper Ratio 0.333 
Area Sref 265 ft2 
Sweep 48 deg 
Dry Weight  800  lb 

 
 
 
 The structural model was developed in NASTRAN using the following elements.  

 
 Skins: QUAD-4/TRIA-3 Elements 

 Spars: Shear Elements 

 Ribs: Shear Elements 

 Spar Caps: Bar Elements 

 

 Figure 4 is an image of the RLV’s wing obtained from full RLV structural model which 

will be referred to as the original model. The elements that construct the model in NASTAN can 

be found below Figure 4.  
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Figure 4: Original Configuration F Model 

NUMBER OF GRID     POINTS   =      465 
NUMBER OF CONM2    ELEMENTS =       12 
NUMBER OF CQUAD4   ELEMENTS =      204 
NUMBER OF CROD     ELEMENTS =      605 
NUMBER OF CSHEAR   ELEMENTS =      174 
NUMBER OF CTRIA3   ELEMENTS =       28 
NUMBER OF RBAR     ELEMENTS =      133 
NUMBER OF RBE1     ELEMENTS =        5 

 

 To reduce the complexity of the original model, elements were removed to produce a 

more streamline model seen in Figure 5. The modified model of the RLV’s wing will reduce the 

computational time when employing uncertainty quantification methods. Once again the 

elements used in the modified model can be found below the Figure 5.  
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Figure 5: Modified Configuration F Model 

 
NUMBER OF GRID     POINTS   =       91 
NUMBER OF CONM2    ELEMENTS =        5 
NUMBER OF CQUAD4   ELEMENTS =       54 
NUMBER OF CROD     ELEMENTS =      201 
NUMBER OF CSHEAR   ELEMENTS =       72 
NUMBER OF CTRIA3   ELEMENTS =        6 

 

 This modified model is capable of static and dynamic aeroelasticty simulations with 

possible analysis including: 

 - Static Analysis: 

  - Divergent Dynamic Pressure 

  - Trim Angle of Attack 

  - Control Surface Reversal Pressure 

  - Structural Displacement 

 - Dynamic Analysis: 

  - Flutter Velocity 

  - Low-frequency modes and mode shape 
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4.2 Structural Model Validation 
 

 When a model is modified from its original configuration it is necessary to know how the 

two models compare. To be able to use the modified model with confidence a validation study 

must be conducted. Two methods of validation were demonstrated in the following sections. The 

first validation implemented was a natural frequency comparison, where the two wing models 

first five natural frequencies were analyzed. The second validation uses the wing models mode 

shapes to investigate a modal assurance criterion analysis. Although both types of validation can 

be used separately a more conclusive comparison can be made when the two methods are 

coupled. 

 

4.2.1 Frequency Comparison Analysis  
 
 
 
 The first validation analysis compared the natural frequencies between the two models 

described in section 4.1.1. The natural frequencies were established using NASTRAN’s dynamic 

analysis. Both models were constrained at the root of the wing in all six degrees of freedom. 

Table 2 compares the models first five natural frequencies of the models.  

 

 
Table 2: Natural Frequency Comparison of Modified and Original RLV FEA Wing 

Mode Original  (Hz) Modified (Hz) % Difference From Original  
1 7.79 8.02 2.95 
2 16.89 12.57 25.5 
3 23.63 26.16 10.70 
4 57.38 54.88 4.35 
5 76.15 72.27 5.08 
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 The first five modes were selected to compare because in most cases the natural 

frequencies will most likely never reach above them in the physical world. Figure 6 illustrates 

the first five mode shapes and natural frequencies, where the figures on the left are the original 

wing configuration and the figures on the right are of the modified wing configuration. The first 

mode shape of the wing structures contains a bending mode. Whereas the second mode shapes 

illustrate a twisting modes. The third mode is a bending/twisting mode. The fourth and fifth 

modes are a combination of different mode shapes. Although the natural frequencies do not 

compare exactly some disagreement will occur when a lower fidelity model is introduced, due to 

the reduction of nodes.  
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 Orignal FEA model Modified FEA model 

MODE 1 

7.79 Hz 8.02 Hz 

MODE 2 

16.89 Hz 12.57 Hz 

MODE 3 

23.63 Hz 26.16 Hz 

 
 
 
 

MODE 4 

57.38 Hz 54.88 Hz 

MODE 5 

76.15 Hz 72.27 Hz 

Figure 6: First Five Natural Frequencies and Mode Shapes of the Original and Modified RLV FEA Wing Model 
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4.2.2 Modal Assurance Criteria Analysis  
 
 
 Another important characteristic when comparing two models is to identify if the mode 

shapes demonstrate the same behavior. The modal assurance criterion (MAC) (Equation (1)) was 

the second method used to validate the new model. The MAC is a measure between two modes, 

whether they are by two experimental modes, a physic derived mode and experimental modes, or 

two physic derived modes [11, 12]. [11][12]In most cases the MAC is used to compare a physical 

derived mode and an experimental mode. Since there is not a physical model of the RLV to get 

experimental modes the two finite element models were compared assuming the original model 

is exact. 

  

  𝐌𝐌𝐌𝐌𝐌𝐌(𝛙𝛙𝐥𝐥,𝛙𝛙𝐥𝐥
′) = �𝛙𝛙𝐥𝐥

𝐇𝐇𝛙𝛙𝐦𝐦
′ �

𝟐𝟐

�𝛙𝛙𝐥𝐥
𝐇𝐇𝛙𝛙𝐥𝐥���𝛙𝛙𝐦𝐦

′ �𝐇𝐇𝛙𝛙𝐥𝐥𝐦𝐦
′ �

     (1) 

 

 The MAC matrix can be any size depending on how many mode shapes are being 

evaluated. In the MAC matrix each row and each column represent one mode shape. The MAC 

matrix consists of coefficients between 1 and 0, where a value of 1 indicates a perfect match and 

0 indicated no similarity. If the two models were an exact match there would be 1s down the 

diagonal of the MAC. A value of .9 indicates a strong similarity between the two shapes. Mode 

switching can also be determined by the MAC matrix this can be seen by a high value located in 

an off diagonal. 

 

 The MAC was used to compare the first five mode shapes of the original and modified 

model. All six degrees of freedom of the mode shapes were compared. Table 3 contains the 

results of the MAC analysis.  
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Table 3: MAC of Original and Modified Models 

 Original Model 

Modified 
Model 

Modes 1 2 3 4 5 
1 0.979209 0.095065 0.256329 0.058633 3.80E-05 
2 0.057177 0.927935 0.21611 0.069353 0.000554 
3 0.240514 0.002087 0.867664 0.033638 0.368551 
4 0.001051 0.140134 0.002908 7.78E-06 0.737396 
5 0.034796 0.003098 0.002735 0.802372 0.013169 

 
 

 The table was color-coded to help distinguish the MAC coefficients. The boxes 

highlighted in red illustrate a good similarity between the two shapes. The first and second mode 

shape of the models compare very nicely, which can be seen by the values above .9 on the table. 

This is critical because when a flutter analysis is performed the first and second mode shapes are 

usually responsible for the flutter excitation (which will be described in a later section). The third 

mode shape is slightly less accurate but still correlates with the original model demonstrated by 

the .87 value in the diagonal. As described before in the previous section the third mode shape 

displays a bending/twisting motion. This can be seen in the blue boxes that there is around 

twenty percent correlation between the first, second, and third mode shapes. The fourth and fifth 

mode shape flip and can be seen with the high values found in the off diagonal located in the 

yellow boxes.  

 

 The two forms of validation that were investigated provides confidence, that the new 

model developed is an acceptable surrogate for the configuration F wing. It captures the physical 

model closely enough that the uncertainty quantification analysis can be implemented with 

meaningful data. The new model saves computational time while the uncertainty quantification 
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methods are being used and will allow a higher fidelity model to easily replace the model at the 

appropriate time of the design process.  

4.3 Aeroelastic Flutter Model Development  
 

 Air vehicles that have vertical tails on the tips of the wing like the current RLV 

configuration are more susceptible to flutter due to the additional mass on the wing tip (which 

lowers bending frequency) and the additional aerodynamic lifting surface placed at the end of the 

wing. There have been many types of aeroelastic analysis conducted on hypersonic and reusable 

launch vehicles [13- 15].[13][14][15]This provides an excellent analysis to complete a risk quantification 

study using aeroelastic flutter as the failure bound (limit state).  

 

 To conduct an aerodynamic flutter analysis many inputs are needed for a simulation. The 

first input needed is a structural model that represents the vehicle being analyzed. Next, an 

aerodynamic model must also be constructed and positioned, to capture the aerodynamic loads 

associated with flight found in the trajectory optimization. In this section the steps taken to 

complete a series of flutter analysis on the RLV wing was conducted.  

 

 Aeroelasticity is a primary example of multi-disciplinary analysis.  The coupling of 

aerodynamic and structural forces and responses are analyzed and the effects that this has on 

structural response, vehicle performance, and vehicle controllability are able to be determined.  

Performance parameters such as divergent dynamic pressures, control surface reversal pressures, 

trim conditions and flutter velocities can be calculated.  Although aeroelastic analyses differ 

between Mach regimes the inputs and results to the analyses remain nearly identical for 

implementation within a design framework. 
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 Flutter is a self-feeding vibration where aerodynamic forces on a wing couples with the 

natural mode of vibration to produce periodic motion that can cause catastrophic failure. The 

vibration movement of the wing increases an aerodynamic load which in turn drives the wing to 

deflect further. If the energy during the period of aerodynamic excitation is larger than the 

natural damping of the system, the level of vibration will increase. The vibration levels can thus 

build up and are only limited when the aerodynamic or mechanical damping of the object match 

the energy input, this often results in large amplitudes and can lead to rapid failure. This leads to 

an excellent parameter to examine with the tools for uncertainty quantification since there are so 

many uncertain variables that that could affect flutter. 

 

4.3.1 Reusable Launch Vehicle Aeroelastic Flutter Model  
 
 
 NASTRAN FEA software was selected to construct the aeroelastic model due to the 

capability to perform linear aeroelastic analysis. NASTRAN’s aerodynamic analysis, like 

structural analysis, is based on the finite element approach [16]. The finite aerodynamic elements 

are strips or boxes on which there are aerodynamic forces. These can be described simply by 

defining properties of the array (panel). The grid points defining the structure usually do not 

coincide with the grid points defining the aerodynamic elements, provision has been made to 

generate equations for interpolating between the two, known as splines. This interpolation is a 

key feature, since it allows the choice of structural and aerodynamic considerations to occur 

independently. NASTRAN provides three methods to complete a flutter analysis including the K, 

P, and PK methods. All of the flutter analysis presented in this research utilized the PK method.  

Choosing an appropriate aerodynamic theory is critical to compute a flutter analysis. NASTRAN 



23 
 

has implemented six aerodynamic theories including doublet-lattice subsonic lifting surface 

theory, ZONA51 supersonic lifting surface theory, subsonic wing-body interference theory, 

mach box method, strip theory, and piston theory.  Doublet lattice and ZONA51 were both used 

in the flutter analyses given that only the subsonic and supersonic regimes were being analyzed. 

The Doublet-Lattice method can be used for interfering lifting surfaces in subsonic flow. 

ZONA51 is a supersonic lifting surface theory that accounts for the interference among multiple 

lifting surfaces. Figure 7 illustrates the structural and aerodynamic model developed in 

NASTRAN for the aeroelastic flutter analysis. The figure shows the aerodynamic model is the 

same shape as the structural model allowing for accurate interpolation between the two types of 

models. 

 

 

 

Figure 7: NASTRAN’s RLV Wing Aerodynamic Model (Top) and Structural Model (Bottom) 
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4.4 FAST Aeroelastic Flutter Analysis  
  

  Figure 8 and Figure 9 illustrate the results for a single aeroelastic flutter case, in 

NASTRAN, of the modified RLV wing model, using Mach 1.1, at 75 deg F, and symmetric 

boundary conditions. The ○ represents the first bending mode, the □ is the second mode of the 

wing in torsion, and the ◊ is the third mode which consists of a bending twisting mode. Flutter 

occurs when one of the modes cross the zero axis in the V-G plot. The V-G plot in Figure 8 

demonstrates the RLV’s wing begins to flutter at 1500 ft/s. The two modes accountable for the 

flutter are the first wing bending and first torsion modes. Figure 9 reveals the coalescent behavior 

of the two modes to be around 1500 ft/s to 2000 ft/s, also confirming the flutter is occurring.  
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Figure 8: RLV’s Wing Flutter V-G Plot Representative (Mach 1.1, No Fuel, Sym. BC, 75° F) 

 

 

Figure 9: RLV’s Wing Flutter V-ω Plot Representative (Mach 1.1, No Fuel, Sym. BC, 75° F) 
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To further explore the aeroelastic flutter of the RLV wing configuration a more in depth 

analysis was performed to make an assessment of flutter speed across the flight envelope using linear 

aerodynamic methods. This analysis will only be valid in the subsonic and supersonic regime due to 

the panel methods not being valid at transonic Mach numbers. This analysis will use the same initial 

conditions as stated in the previous aeroelastic flutter study, only changing the Mach number. 

 

 Figure 10 shows the results for the full flutter analysis. The lowest flutter dynamic 

pressure Mach number occurs at Mach 1.1. In this analysis the first mode shape was responsible 

for the flutter excitation in each of the simulations.  

 

 

Figure 10: Flutter Dynamic Pressure with Symmetric Boundary Condition 
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5.0 RISK QUANTIFICATION 
 
 

Uncertainty in a design problem can arise from multiple sources as stated by Rüdiger 

[17].  This is exacerbated in problems that involve modeling, whether that is a simplified 

physical model, or a computational model. These uncertainties can commonly associate with 

three distinct sources:  Model-form uncertainty, parametric uncertainty, and predictive 

uncertainty.  (Figure 11) 

 

 
Figure 11: Uncertainty Breakdown in Modeling Problems 
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The significance of the uncertainty, and its source, is usually related to the confidence 

that a designer has in the models being utilized for analysis. As models are better understood, 

such as with static finite element analysis, the contribution to the overall uncertainty of both 

model-form uncertainty and predictive uncertainty are decreased, sometimes to the point of 

insignificance. However, in less understood phenomenon, or when working with over-simplified 

or novel models, the contribution to the total uncertainty of these two sources can potentially 

outweigh that of predictive uncertainty by orders of magnitude.  

 

Parametric uncertainty refers to the uncertainty in the inputs to the model and analysis.  

Although models will usually operate with deterministic parameters in the scope of the actual 

physical manifestation of the problem, these values cannot always be considered deterministic.  

Inherent uncertainties can come from multiple sources, which contribute and compound to 

produce a degree of disbelief in the result of a single analysis. While uncertainties in the design 

variables and input parameters to a model are referred to in general as parametric uncertainty, the 

way in which these uncertainties are modeled and considered determines their further 

classification. Parametric uncertainty is expanded into aleatory and epistemic uncertainties [18].  

 
When a physical problem is represented as a model, uncertainties are inherent to the 

modeling process.  In aeroelastic design these uncertainties can arise from multiple sources, such 

as the input parameters into the model, the fidelity of aerodynamic analyses, and the 

aerodynamic and structural discretization of the physical domain.  Extensive work has been 

completed in the past on parametric uncertainty on structural inputs [19, 20],[19][20]aerodynamic inputs 

[20, 21],[20][21]and environmental loading conditions [22].  However, the full uncertainty associated 
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with modeling consists of more than parametric input, but also includes other factors, such as the 

uncertainties introduced by the modeling process itself.  The total uncertainty resulting from 

modeling can at a high level be broken into three distinct components [23]: model-form 

uncertainty—the degree of uncertainty between multiple models of the same physical problem—

parametric uncertainty—the uncertainty in the parameters of an analysis—and predictive 

uncertainty—the unknown errors introduced by the simplifying assumptions of a model, often 

reduced to be the difference between a simulation result and the true physical problem (Equation 

(2)). 

 

  ε̂)(~
+= xfy i   (2) 

 

In Equation (2), 𝑓𝑓𝑖𝑖�(�̅�𝑥) represents both the model-form and parametric uncertainty in the 

problem and ε̂  represents the predictive uncertainty.  Any uncertainty in the input vector x  is 

considered parametric uncertainty.  While this uncertainty is propagated through the model, it is 

separable from model-form uncertainty in a well understood problem.  The function 𝑓𝑓𝑖𝑖  represents 

a model of the system. When multiple models are considered, the difference between the values 

of 𝑓𝑓𝑖𝑖�(�̅�𝑥) is considered model-form uncertainty. Finally, the difference between the model’s 

representation of the system,  𝑓𝑓𝑖𝑖�(�̅�𝑥) , and the “true” value of the analysis, y , is called the 

predictive uncertainty, 𝜀𝜀̃.  The predictive uncertainty in a problem is a result of the assumptions 

made in the modeling process.  Parametric uncertainty quantification methods and applications 

have been addressed in depth in the existing literature [19[19][20] - [21][22]22, [24][25]24[26][27] -  27].  However, the other 

two sources of uncertainty--both model-form and predictive uncertainty--are frequently ignored 

in aeroelastic problems. 
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5.1 Aleatory Uncertainty Quantification  
 

Aleatory uncertainty is what is traditionally thought of when uncertainty is considered in 

a structural problem. It refers to the type of uncertainty where enough knowledge regarding the 

uncertainty of a parameter is known such that a continuous distribution function of its values can 

be determined and assumed to be valid. Aleatory uncertainty is typically defined in terms of 

probabilistic distributions (Figure 12). 

 

 

Figure 12: Probability Density Function in 2D 

 

When described in this manner, a probabilistic distribution of output parameters can often 

be calculated, to which a probability of failure can be prescribed (Figure 13).   
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Figure 13: Probability of Failure Representation 

 
However, all variables cannot always be assumed to be probabilistic. While with well 

understood parameters with an abundance of data available, it is possible to assign a distribution 

to the parameter, with other less understood parameters, this might not be possible, or might even 

result in erroneous results.  If a probability is assigned to a value to which only limited data is 

available, it is possible to improperly define the variable, making the results of any analysis 

using that distribution, incorrect.  Instead of assigning a distribution to these parameters in this 

case, another method must be explored for analyzing the uncertainty in these problems. 

 
 
 Aleatory uncertainty must be accounted for in the design process, while still maintaining 

computational efficiency. To quantify aleatory uncertainty quantification the following methods 

were explored. 
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- Monte Carlo Simulations  

- First order reliability method( FORM) 

 Hasofer and Lind iteration method (HL) 

 FORM with adaptive approximations, TANA  

- Second order reliability method (SORM) 

 Breitung’s formulation  

 Tvedt’s Formulation 

 Koyluoglu’s Formulation 

 

 The goal of the preliminary analysis using aleatory uncertainty quantification techniques 

is to find a sufficient method of uncertainty quantification for the vehicle design, with specific 

interest initially in the aeroelastic design and analysis of an RLV wing. To complete an efficient 

uncertainty quantification analysis it is important that a method is selected that gives an accurate 

reliability with a minimal amount of function evaluations, which is directly related to simulation 

time. During the comparison of the aleatory methods, a closed form nonlinear equation was used 

to demonstrate the capabilities of the methods while not using computational time on executing 

FEA.   

  

 Each method listed above was analyzed and compared to a converged uncertainty 

quantification Monte Carlo Simulation analysis, which can be considered in this case to represent 

an “exact” solution, to show the relative accuracy of the reliability produced by each method. 
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During the analysis the function calls were also recorded to represent the number of aeroelastic 

simulations that would be required when a closed form equation will no longer be available.  

 
  The comparative study examines the different types of aleatory uncertainty 

quantification methods. With the results, a decision on which method provides the best accuracy 

taking into consideration of function calls for this demonstration. For example if a method has 

99.9% accuracy and takes a month to execute the analysis compared to a method that has 97% 

accuracy that takes a week to execute, a sacrifice will have to be made on accuracy or time. This 

will provide the designer with information regarding the trade-offs between accuracy and 

computational time. 

 

 Equation (3) was selected as the closed form equation to demonstrate the potential of 

each method. 

  

                                         𝑔𝑔(𝑥𝑥) = 𝑥𝑥1
4 + 2𝑥𝑥2

4 + 𝑥𝑥1𝑥𝑥2 − 100 (3) 

  

 The closed form equation represents a “black box” where any type of simulation can be 

placed. The closed form equation has two important characteristics that are congruent with an 

aeroelastic analysis. First, the closed form equation is highly nonlinear; both x1 and x2 are to the 

fourth power on behalf of the nonlinearity of an aeroelastic analysis. The second attribute of the 

equation is x1 and x2 are coupled, representing the coupling of variables between aerodynamic 

and structural portions of the aeroelastic analysis. Variables x1 and x2 both have a mean of 10 

and a normal standard deviation of 5 throughout the comparison study. g(x) represents the limit 
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state, which signifies the failure boundary, if the simulation results in a negative, it is considered 

a failure.  

 

5.1.1 Monte Carlo Aleatory Uncertainty Quantification  
 

 Monte Carlo is one of the most basic sample techniques developed by Neuman and Ulam 

in 1949 known as a simple random sampling method. This technique can be implemented to 

solve uncertainty quantification analyses. To use the Monte Carlo Simulation technique, a 

distribution type is needed for the random variables. With the distribution type a random sample 

set is compiled. Using the values in the sample set as input values simulations are then executed. 

In most cases Monte Carlo simulation provides accurate results with very high computational 

cost. Using the random variables and closed form equation (Equation (3)), a Monte Carlo 

Simulation was performed using Matlab mathematical program to process the information.  

 

 The number of simulations was increased during each trial in the analysis to improve 

accuracy and demonstrate convergence. During each execution of the Monte Carlo simulation, 

the failures were recorded. The probability of failure was calculated by taking the number of 

failures and dividing it by the number of simulations as seen in Table 4. 
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Table 4: Monte Carlo Simulations Results 

No. of Simulations  1,000  10,000  50,000  100,000  200,000  500,000  1,000,000  2,000,000   3,861,000  

Number of failures  5  48  234  468  956  2379  4769  9476   18335  

P
f
 

(probability of failure)
 0.005  0.0048  0.00468  0.00468  0.00478  0.004758  0.004769  0.004738   0.00474  

 
 

Noting: 

1. The number of simulations correlates to the accuracy of the Monte Carlo Simulation. As 

seen in Table 4 the probability of failure converges as more simulations are conducted. 

2. A convenience of the Monte Carlo sampling technique is the process can be stopped and 

started at any time because each simulation is independent from the next.  

3. Knowing each simulation is independent from the last, saved time in this comparative 

study.  

  

 The final simulation of the Monte Carlo technique employs 3,861,000 function 

evaluations. The analysis resulted in the probability of failure of 0.00474, and will be used as the 

most accurate uncertainty. 

 

5.1.2 First Order Reliability Methods (FORM) 
 

 As seen in the results from the Monte Carlo Simulation, many simulations are needed to 

achieve a respectable solution; this provides motivation to find a more efficient method. First 

order reliability method (FORM) is an alternative technique to solve aleatory uncertainty 
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problems. FORM uses an iteration method while approximating the limit state function to solve 

for the probability of failure. Yan-Gang et al [28] demonstrated a general procedure for the 

first/second-order reliability methods will be used in this investigation. 

  

 Figure 14 graphically represents the FORM process. The first step in the process is the 

same as Monte Carlo, where the mean values, standard deviations, and distributions of the 

uncertain variables are required. In the figure μ1 and μ2 both have normal distributions. g(x) = 0 

represents the limit state which separates the safe and failure region. FORM requires the means 

of the uncertain variables and the limit state function be normalized in this case using Equation 

(4) (X-space is transformed to U-space). 
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Figure 14: Graphical FORM Representation 

 
 

  𝑢𝑢𝑖𝑖 =
𝑥𝑥𝑖𝑖−𝜇𝜇𝑥𝑥𝑖𝑖
𝜎𝜎𝑥𝑥𝑖𝑖

 (4) 
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 This transformation allows for the means of the uncertain variables to relocate to the 

origin (0, 0 position). Once transformed to U-space an optimization is preformed to minimize the 

length of β (reliability index). Where β contacts the limit state function the most probable point 

of failure is determined (MPP). A first order approximation can be made at the MPP. This 

approximation is illustrated by a line drawn tangent to the limit state function at the MPP. The 

reliability is then found by locating the correlating percent in a cumulative standard normal 

distribution table to determine the probability of failure. Two methods to solve FORM problems 

are Hasofer and Lind iteration method (HL) and FORM with adaptive approximations. 

 

 
 The Hasofer and Lind iteration method (HL) is a recursive algorithm used to solve 

reliability problems [29]. The HL method approximated the limit-state function using the first-

order Taylor series.  

 

 FORM with adaptive approximation also approximates the limit state function using two-

point adaptive nonlinearity approximation (TANA) Equation (5). Although extra function calls 

are needed initially to use TANA it closely approximates the limit state function resulting in less 

function calls to convergence [30].  

 

  𝐺𝐺𝑇𝑇(𝑈𝑈) = 𝐺𝐺(𝑈𝑈2) + 1
𝑟𝑟
∑ 𝑢𝑢𝑖𝑖 ,21−𝑟𝑟�𝑢𝑢𝑖𝑖𝑟𝑟 − 𝑢𝑢𝑖𝑖 ,2𝑟𝑟� �

𝜕𝜕𝑔𝑔
𝜕𝜕𝑢𝑢𝑖𝑖
�
𝑈𝑈2

𝑛𝑛
𝑖𝑖=1  (5) 

 
 
 
 
 



39 
 

5.1.3 Second Order Reliability Methods (SORM) 
 

 FORM works well when the limit state function is nearly linear. However, when 

considering aeroelastic limit state the function is not always linear. A second order reliability 

method (SORM) will tend to provide a more accurate representation of the design space. SORM 

requires the β and MPP from the FORM analysis. SORM calls for second order derivatives of 

the limit state function. On top of Figure 15 a first order approximation is shown. As observed in 

the graph the first order approximation underestimates the probability of failure by a significant 

amount, giving inaccurate results. On the bottom of Figure 15 a second order approximation is 

used to illustrate the improvement of the probability of failure approximation. 

 

 

 
Figure 15: Graphical Representation of FORM vs. SORM 
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 The first step of the process is to find β and the MPP in U space using a FORM method. 

The next step is to compute the second-order derivatives and create the B matrix which becomes 

very computationally expensive when more than two variables are being examined. The 

computational time can be reduced by using a function approximation (Such as TANA described 

in the previous section). Next the H matrix is created by rotating U space to Y space. This is 

completed by orthogonalizing the H matrix using the Gram Schmidt algorithm. Following with 

computing the main curvatures kj by solving the eigenvalues of HBHT. kj and β is then used in 

each of the following methods to compute the probability of failure. The following SORM 

methods have a brief explanation and show the equations for the probability of failure.  

 

 Breitung’s formulation was one of the first methods introduced in 1984 [31], Equation 

(6). The formulation is derived as an asymptotic formula of the failure probability.  

 

 

  𝑝𝑝𝑓𝑓 = Φ�−𝛽𝛽𝑓𝑓�∏ �1 + 𝛽𝛽𝑓𝑓𝑘𝑘𝑗𝑗 �
−1

2𝑛𝑛−1
𝑗𝑗=1  (6) 

 

 Tvedt introduced a three-term approximation in 1984 in which A2 and A3 can be 

interpreted as the correction for Breitung’s formula [32] Equation (7). 
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  𝑝𝑝𝑓𝑓 = Φ�−𝛽𝛽𝑓𝑓�∏ �1 + 𝛽𝛽𝑓𝑓𝑘𝑘𝑗𝑗 �
−1

2𝑛𝑛−1
𝑗𝑗=1 + 𝐴𝐴2 + 𝐴𝐴3  

𝐴𝐴2 = �𝛽𝛽𝑓𝑓Φ�−𝛽𝛽𝑓𝑓� − 𝜙𝜙�−𝛽𝛽𝑓𝑓�� �∏ �1 + 𝛽𝛽𝑓𝑓𝑘𝑘𝑗𝑗 �
−1

2𝑛𝑛−1
𝑗𝑗=1 −∏ �1 + (𝛽𝛽𝑓𝑓 + 1)𝑘𝑘𝑗𝑗 �

−1
2𝑛𝑛−1

𝑗𝑗=1 �  (7) 

𝐴𝐴3 = (𝛽𝛽𝑓𝑓 + 1)�𝛽𝛽𝑓𝑓Φ�−𝛽𝛽𝑓𝑓� − 𝜙𝜙�−𝛽𝛽𝑓𝑓�� �∏ �1 + 𝛽𝛽𝑓𝑓𝑘𝑘𝑗𝑗 �
−1

2𝑛𝑛−1
𝑗𝑗=1 − 𝑅𝑅𝑅𝑅∏ �1 + (𝛽𝛽𝑓𝑓 + 1)𝑘𝑘𝑗𝑗 �

−1
2𝑛𝑛−1

𝑗𝑗=1 �  

 

  Koyluoglu and Nielsen developed Koyluoglu’s formulation in 1994 making it a more 

recent method compared to the others [33] Equation (8). This formulation is a one-term 

approximation. 

 

𝑝𝑝𝑓𝑓 = Φ�−𝛽𝛽𝑓𝑓���1 + 𝑘𝑘𝑗𝑗
𝜙𝜙�𝛽𝛽𝑓𝑓�
Φ�−𝛽𝛽𝑓𝑓�

�
−1

2𝑛𝑛−1

𝑗𝑗=1

 

𝑓𝑓𝑓𝑓𝑟𝑟 𝑘𝑘𝑗𝑗 > 0, 𝑗𝑗 = 1,2, … , 𝑛𝑛 − 1 

𝑝𝑝𝑓𝑓 = 1 −Φ�𝛽𝛽𝑓𝑓���1 + 𝑘𝑘𝑗𝑗
𝜙𝜙�𝛽𝛽𝑓𝑓�
Φ�𝛽𝛽𝑓𝑓�

�
−1

2𝑛𝑛−1

𝑗𝑗=1

 

  𝑓𝑓𝑓𝑓𝑟𝑟 𝑘𝑘𝑗𝑗 < 0, 𝑗𝑗 = 1,2, … ,𝑛𝑛 − 1  (8) 

 

 Using FORM and SORM methods, an uncertainty quantification analysis was 

accomplished on the closed form equation represented by Equation (3) using the same conditions 

that were used in the Monte Carlo simulation. The results of this comparative study can be found 

in Table 5. The gradients of the closed form equation are found using finite difference rather than 

mathematically solving for them to represent a black box simulation. 
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Table 5: UQ Results for a Closed-Form Problem 

 
Total Number of Function 

Calls 
Pf 

% Difference from 
MC 

HL iteration method 87 0.01589 235.4 

FORM with adaptive 
approximations 

15 0.01590 235.4 

Breitung's Formulation 21 0.00498 5.0 

Tvedt's Formulation 21 0.00436 7.95 

Koyluoglu's Formulation 21 0.00464 2.08 

Monte Carlo 3,861,000 0.00474 0 

 

 

 The results from the aleatory uncertainty quantification methods were compared. The HL 

iteration method and FORM with adaptive approximation performed poorly as expected because 

the limit state function was nonlinear. FORM with adaptive approximations using TANA as the 

approximation shows a much faster convergence than the HL iteration method. The 

improvement of FORM with adaptive approximations finds an optimum β in 15 functions which 

is directly related to the amount of computation time that it would take when using this method 

for vehicle design. The FORM with adaptive approximations method will be used during the 

uncertainty quantification in vehicle design based on the savings of computational time.  

 

 Breitung's Formulation, Tvedt's Formulation, and Koyluoglu's Formulation were the 

three SORM methods compared. As explained earlier a FORM analysis is needed to construct 
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SORM. This makes SORM have a higher computational cost then FORM. Since the same 

method is used to solve for the Eigenvalue k that is used in the formulas the three methods have 

the same amount of function calls. For this particular problem Koyluoglu's Formulation 

performed closest to the Monte Carlo results.  

 

5.2 Epistemic Uncertainty Quantification 
 
 

In problems where little variable information exists, it is necessary to use an uncertainty 

quantification method that does not introduce additional assumptions, which would result in 

adding more uncertainty into the problem.  These methods are referred to as epistemic 

uncertainty quantification methods.  Epistemic uncertainty is uncertainty to which no 

assumptions are made regarding the parameters. Instead of defining a distribution to the 

parameters, intervals and bounds of parameters are assigned based upon limited available data, 

expert opinions, or prior knowledge of the problem. Using these interval definitions of variables, 

the uncertainty in the system must then be propagated using advanced methods.  A known 

method of propagating this uncertainty is Dempster-Shafer Theory or Evidence Theory [34,[34][35] 35]. 

 

5.2.1 Evidence Theory  
 

 A technique is needed to quantify uncertainty when there is little information known 

about the uncertain variables. Two epistemic variables that play a key role in a RLV are 

atmospheric conditions and composite properties. Evidence theory can quantify epistemic 

uncertainty without making any assumptions and was introduced to the reliability of structures 

by Bae et al [26, [26][36] 36]. Evidence Theory measures uncertainty with two measures, belief (BEL) 
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and plausibility (PL). The reliability of the problem can be found between these two bounds. The 

upper bound is the plausibility and the lower is belief, this defines a probability interval. The 

bound size changes by the amount of information known about the uncertain variables. When 

little information is known the bound is large, contrary when full information is known the 

bound is small. To establish the values of BEL and PL a basic belief assignment (BBA) (Figure 

17) needs to be constructed. To construct a BBA, first a frame of discernment needs to be 

established. The frame of discernment represents (Figure 16) all the possible distinct 

propositions given in Equation (9).  

 

 

Figure 16: Frame of Discernment 

 

  2𝑋𝑋 = {𝜙𝜙, {𝑥𝑥1}, {𝑥𝑥2}, {𝑥𝑥3}, {𝑥𝑥1, 𝑥𝑥2}, {𝑥𝑥2, 𝑥𝑥3}, {𝑥𝑥1, 𝑥𝑥3},𝑋𝑋}  (9) 

 

Each combination in Equation (9) can be assigned a value from zero to one. This value will be 

referred to as m and is the weight of belief for that section of the frame of discernment. 

 

 

Figure 17: Basic Belief Assignment 
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The m contains the weighted information about the BBA and must satisfy Equations (10 - 12).  

 

   𝑚𝑚(𝐴𝐴) ≥ 0𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑛𝑛𝑎𝑎 𝐴𝐴 ∈ 2𝑋𝑋           (10)   

                                                                      

        𝑚𝑚(∅) =  0  (11)  

 

  ∑ 𝑚𝑚(𝐴𝐴) = 1𝐴𝐴∈2𝑋𝑋  (12)  

 

Using the BBA structure defined, Equations (13, 14) define BEL(A) and PL(A) respectively.  

 

   𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴) = ∑ 𝑚𝑚(𝐶𝐶)𝐶𝐶⊂𝐴𝐴   (13) 

 

   𝑃𝑃𝐵𝐵(𝐴𝐴) = ∑ 𝑚𝑚(𝐶𝐶) 𝐶𝐶∩𝐴𝐴≠0  (14) 

 

 To demonstrate evidence theory, a two variable case is provided based on an RLV wing 

flutter reliability. In this analysis the limit state is 2000 pounds per square foot (psf) flutter 

dynamic pressure. This states that if the flutter dynamic pressure falls below 2000 psf the 

analysis is considered a failure. Figure 18 denotes the two BBA’s for the two variable 

demonstration case. The uncertain variables, temperature and gas constant, (which relate to the 

uncertainties with the air density) are considered epistemic variables because there is not enough 

accurate information to create a valid pdf. In this case the intervals were chosen by experts and 

the m was assigned by the expert’s opinion.  
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Figure 18: Gas constant and Temperature BBA for Evidence theory Demonstration Case 

 

 The next step is to combine the variables and complete the analysis. Figure 19 shows how 

the variables interact with one another. This is done by putting BBA’s on the x and y axis. Lines 

are then drawn at each interval to show where the variables intersect. The intersections are 

represented by black dots. At each black dot a flutter analysis was executed with the 

corresponding inputs found on the x and y axis. This two variable problem shows, with the 

BBA’s provided, 20 simulations will need to be executed. To calculate the BEL and PL 

hypercubes must be calculated. A hypercube in a two variable problem is represented by an area. 

For, example the yellow box in Figure 19 is a hypercube in which two of the intervals interact 

with one another. The area is then calculated by multiplying .6 by .1 which results in m=.06. The 

hypercubes must be calculated for each interaction. 
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Figure 19: Two Variable Hypercube Calculation 

 

 Once the hypercubes are calculated the next step can be seen in Figure 20. The Flutter 

analysis was executed at each intersection. If the flutter analysis resulted in a flutter dynamic 

pressure less than 2000 psf the point was represented with a red dot. Likewise, if the flutter 

resulted in a dynamic pressure more than 2000 psf the intersection was represented with a blue 

dot.   
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Figure 20: Two Variable Demonstration Case Function Evaluation 

  

 The BEL and PL can be calculated by examining Figure 20. If all of the intersections of a 

hypercube are blue then that hypercube is part of the BEL equation. If a hypercube has a 

combination of red and blue dots it falls in the PL section. PL also includes all of the hypercubes 

that were in the BEL equation.  If a hypercube contains all red dots it is considered a failure 

region.  
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𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴) = �𝑚𝑚(𝐶𝐶)
𝐶𝐶⊂𝐴𝐴

 𝑃𝑃𝐵𝐵(𝐴𝐴) = � 𝑚𝑚(𝐶𝐶)
𝐶𝐶∩𝐴𝐴≠0

 

BEL=.015+.03+.51 

BEL=.555  

PL=.015+.03+.51+.225+.03+.06 

PL=.87 

Figure 21: Two Variable Belief and Plausibility Calculations 

 

Figure 21 shows the calculation of BEL and PL. The BEL and PL are the bounds of the 

probability of success. This illustrates without making any assumptions that the reliability falls 

between .555 and .87.  

 

5.3 Plausibility Decision 
 

 To accomplish the task of merging evidence theory into mathematical optimization 

procedures, sensitivity information of BEL and or PL metrics must be available with respect to 

the design variables. Design optimization using a search direction is one of the most basic 

methods of structural optimization. The most straightforward approach to obtain gradients, with 

respect to the design variables, is the finite difference method. As seen in Figure 22 a belief and 

plausibility demonstration is plotted with respect to a design variable. This shows even if finite 

difference was used there is little change in the belief and plausibility when the design variable is 

altered. The resulting gradients would always be a one or zero making gradient-based design 

optimization nearly impossible.  
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Figure 22: PL and BEL Discontinues Behavior Based on Design Variable Modification 

 

 To use gradient-based design optimization, a new measure must be determined. Bae 

introduced a new measure known as plausibility decision (PL_dec ) [37]. Alyanak introduced an 

additional approximation method to find PL_dec [38]. This measure assumes a uniform 

probability distribution for each distinct proposition interval in the frame of discernment. Then 

the uncertainty is directly integrated, using approximation functions to increase efficiency. Since 

PL_dec is determined by integration, it creates a continuous measure that can be seen in Figure 

23. Given that PL_dec is a continuous measure it will be possible to find gradient information 

that can be used in a finite difference method. 
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Figure 23: Plausibility Decision Behavior Based on Design Variable Modification 

 
 Three methods presenting the plausibility decision approximation can be found in Figure 

24. On the left is the approximation developed by Bae in which the limit state function is 

approximated by using a nonlinear approximation (TANA). In the middle Alyanak developed a 

linear approximation that reduces computational time.  Benanzer developed a numerical 

approximation where no extra simulations are required [39]. Benanzer plausibility decision 

method is an internal method used at Wright State University (Equation (15)). 

 

   

Bae [37] Alyanak [38] Benanzer [39] 
Figure 24: Plausibility Decision Methods 
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∑ max (𝑔𝑔𝑖𝑖 ,0)𝑁𝑁
𝑖𝑖=1
∑ �𝑔𝑔𝑖𝑖2𝑁𝑁
𝑖𝑖=1

 (15) 

 

 Each of the methods has previously been validated and can be implemented into a finite 

difference scheme to find the gradients of uncertainty quantification analysis. One major 

difference in the approximations is how they behave in an n-dimensional problem. The 

complexity of the approximation of PL_dec exponentially expands when more variables are used 

in Bae’s and Alyanak’s approximations. One advantage to Benanzer’s plausibility decision 

approximation is it can easy be implemented into an n-dimensional problem, because the 

approximation is completed numerically. A validation of Benanzer’s plausibility decision 

approximation using two uncertain variables in one hypercube that contains plausibility, can be 

seen in Figure 25 using Equation (16) as the limit state. The results of the actual and 

approximation plausibility decision can be found in Table 6. From this point onward Benanzer’s 

plausibility decision approximation will be used in all of the uncertainty quantification analyses. 

 

   𝑔𝑔(𝑥𝑥1, 𝑥𝑥2) = 3 − 18
𝑥𝑥1
− 6√3

𝑥𝑥2
≥ 0 (16) 

 

Figure 25: Two Variable Hypercube Demonstrating Plausibility Decision 
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Table 6: Two Variable Plausibility Decision Results 

Simulation x1_1 x1_2 x2_1 x2_2 Actual PL_Dec % Difference  
1 9.3 9.7 9.3 9.8 0.2947 0.3155 7.05 
2 9.2 9.5 9.1 9.5 0.9769 0.9425 3.52 
3 8.9 9.6 8.7 9.8 0.8797 0.8512 3.24 
4 8.7 10.3 8.8 10.8 0.3801 0.4374 15.07 
5 8.3 9.3 8.8 11.8 0.7005 0.7371 5.22 
6 8.8 9.1 10.1 11.7 0.26 0.2891 11.19 

 
The comparison of the approximation and exact plausibility decision is located in Table 

6. The assessment shows that the actual and PL_dec range from three to fifteen percent 

difference. Although this may seem high plausibility decision is calculated in each hypercube 

that contains plausibility meaning this approximation can over estimate in some and 

underestimate in others making them a close approximation for the entire evidence theory 

analysis. PL_dec is only an approximation and is used only to get a feel if the reliability of a 

system is close to the plausibility or belief bound.   

 
To further expand the validation of Benanzer’s plausibility decision approximation three 

variables in one hypercube that contains plausibility will be validates and can be seen in Figure 

26 using Equation (17) as the limit state. 

 

  𝑔𝑔(𝑥𝑥1, 𝑥𝑥2) = 3 − 18
𝑥𝑥1
− 6√3

𝑥𝑥2
− 2

𝑥𝑥3
≥ 0 (17) 
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Figure 26: Three Variable Hypercube Demonstrating Plausibility Decision 

 
 

Table 7 contains the results from the three variable demonstration case. Again this 

method produces a reasonable approximation. In simulation six it shows a twenty five percent 

difference of the approximation. Taking a closer look .1136 and .1428 are being compared. The 

approximation is only .0292 off of the actual, but since the values are so low the percent 

difference results in a large difference that is misleading.  

 

Table 7: Three Variable Plausibility Decision Results 

Simulation x1_1 x1_2 x2_1 x2_2 x3_1 x3_2 Actual PL_Dec % Difference  

1 9.1 9.7 9.2 9.9 25.1 25.9 0.9825 0.9566 2.64 
2 9.3 9.9 9.2 9.9 22.3 25.4 0.8606 0.8397 2.43 
3 9.2 10.1 9.2 9.7 21.3 31.4 0.7461 0.7745 3.81 
4 9.7 12.1 7.4 8 8.4 9.7 0.9999 0.9964 0.35 
5 10.3 13.1 7.9 9.3 7.4 10.2 0.4499 0.528 17.36 
6 12.7 13.1 7.6 8.3 7.6 8.5 0.1136 0.1428 25.70 
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5.3.1 Sensitivity Analysis in Evidence Theory 
 
 
 

 
Figure 27: Four-Bar Truss Structure 

 
 To demonstrate a sensitivity analysis using evidence theory and PL_dec, a four bar-truss 

structure will be investigated (Figure 27).  The four bar truss structure was developed by Haftka 

et al [40] to demonstrate a deterministic constrained optimization problem. The original problem 

has been modified to demonstrate plausibility decision and later reliability design optimization. 

There are three bars in the structure with the same length and cross sectional area A1 and a final 

bar with cross sectional area A2. The modulus of elasticity is denoted by E, the load is P, and L 

represents the length of the beam. The constraint considered in this analysis is the displacement 

constraint situated at Equation (18) where  𝑔𝑔(𝑥𝑥) = 6𝑝𝑝𝐵𝐵
𝐵𝐵
� 3
𝐴𝐴1

+ 6√3
𝐴𝐴2
� . When the problem is 

converted to a non-dimensional problem the limit state can be seen in Equation (19) where 

𝑥𝑥1 = 10−3 𝐴𝐴1𝐵𝐵
𝑃𝑃

 and𝑥𝑥2 = 10−3 𝐴𝐴2𝐵𝐵
𝑃𝑃

. 
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  𝛿𝛿 ≤ 10−3𝐵𝐵  (18) 

 

  𝑔𝑔 (𝑥𝑥1, 𝑥𝑥2) = 3 − 18
𝑥𝑥1
− 6√3

𝑥𝑥2
 (19) 

 

  Using the BBAs seen in Figure 28 for the variables X1 and X2 a reliability analysis was 

conducted. Notice the BBAs are now in percentages.  The percentages of the BBA are needed to 

perform the finite difference gradient evaluation.  

 

 

 

Figure 28: Four-Bar Truss Structure BBAs 

 

To demonstrate the gradients of belief, plausibility, and plausibility decision with respect 

to the design variables of the displacement limit state, two parametric investigations were 

completed. This is completed by holding one of the design variables constant at the design 

condition and sweep the other design variable to determine the exact behavior of the measures 
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with respect to the design variable changes. The results can be found in Figure 29 and Figure 30 

where the red line is the BL, the blue line is PL and the green dashed line is PL_dec. 

 
Figure 29: Reliability With Respect to X1 
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Figure 30: Reliability With Respect to X2 

 

 The figures from the parametric study show that belief and plausibility are discontinuous. 

The plausibility decision is a smooth and continues curve that falls between the belief and 

plausibility and gradient information can be used.  

 

 Now it is possible to complete gradient-based sensitivities using finite difference and 

plausibility decision. Equation (20) represents the gradient equation.  

 

      𝜕𝜕𝑃𝑃𝑙𝑙𝑑𝑑𝑅𝑅𝑑𝑑
𝜕𝜕𝑥𝑥𝑖𝑖

  (20) 

 

 Forward finite difference will be demonstrated on the four-bar truss structure. The three 

points ran in evidence theory using the four-bar truss structure can be found in Table 8. 
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Table 8: Finite Difference Numerical Information 

Point BEL PL PL_dec 

(9.5, 9.5) .0550 .2775 .1123 

(9.6, 9.5) .0550 .6095 .1975 
(9.5, 9.6) .0550 .2775 .1582 

 
 

Equations (21, 22) show the gradients using finite difference with respect to the design 

variables X1 and X2. From the results it can be seen that variable X1 is almost as twice as 

sensitive as variable X2 at this design point. This means X1 has a much larger role in the design 

of the truss structure at this particular point.  

 

  𝜕𝜕𝑃𝑃𝐵𝐵𝑑𝑑𝑅𝑅𝑑𝑑
𝜕𝜕𝑥𝑥1

= .1975−.1123
9.6−9.5

= .8520 (21) 

 

  𝜕𝜕𝑃𝑃𝐵𝐵𝑑𝑑𝑅𝑅𝑑𝑑
𝜕𝜕𝑥𝑥1

= .1582−.1123
9.6−9.5

= .4590 (22) 

 

5.4 Model-Form Uncertainty Quantification  

  
 
 When an analysis must be completed for an engineering problem, a representative model 

is often constructed to allow for analysis of the system. To construct this model, assumptions 

regarding the system must be made to simplify the problem to a level at which a model can 

feasibly and efficiently be constructed. These assumptions often vary between models and 

modeling packages, resulting in multiple solutions to identical problems. The difference between 

the multiple models of the same problem is representative of model-form uncertainty—the 
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uncertainty induced by the disagreement among multiple models of the same phenomenon.  

Because there are multiple models that give different answers to the same problem, a method 

must be utilized to combine these individual results into a unified solution while quantifying the 

uncertainty associated with this solution induced by the disagreement between the models.  

Multiple methods have been developed and implemented in the literature to quantify this model-

form uncertainty, such as Bayesian Model Averaging [41] and the adjustment factors approach 

[42].   

 

 The adjustment factors approach was first demonstrated as a method to utilize expert 

opinions in Bayes’ Theorem by Mosleh and Apostolakis [42] in 1986. This method uses an 

adjustment factor to modify the result of the best model.  The adjustment factors approach has 

been demonstrated on multiple engineering problems by Zio and Apostolakis [43] and Reinert 

and Apostolakis[44]. 

 

 The adjustment factor can be represented by multiple types of distribution—such as a 

normal or log-normal distribution—resulting in different adjustment factors being used.  In the 

additive adjustment factor approach, the adjustment factor *
aE  is assumed to be a normal random 

variable.  The representation of the adjusted model prediction is shown in Equation (23), where 

𝑎𝑎∗ represents the best model based on the expert opinion. 

 

   **
aEyy +=   (23) 
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 Knowing the results of multiple models, as well as their probabilities based upon the 

provided expert opinion, the means and variances of the adjusted model can be calculated by 

Equations. (24 – 27): 

                ))(()( *

1

* yyMPEE
N

i
iia −=∑

=

  (24)  

 

  
2

1

* ))()(()( yEyMPEVar
N

i
iia −=∑

=

  (25) 

 

  )()( **
aEEyyE +=   (26) 

 

      )()( *
aEVaryVar =   (27) 

 

 In the above equations, 𝐵𝐵(𝑎𝑎) represents the mean value of y, N is the total number of 

models considered, 𝑃𝑃(𝑀𝑀𝑖𝑖) represents the probability of model 𝑀𝑀𝑖𝑖  based upon expert opinion, and 

𝑎𝑎𝑖𝑖  represents the prediction of model 𝑀𝑀𝑖𝑖 .  From the above equations, the mean and the standard 

distribution of the adjusted model y can be calculated and a normal distribution of the output can 

be constructed.  

 

 In the multiplicative adjustment factors approach, the adjustment factor 𝐵𝐵𝑚𝑚∗  is assumed to 

be a lognormal random variable, and thus the adjusted model prediction is shown in Equation 

(28). 
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** * mEyy =   (28) 

 

 Assuming again that the results and the probabilities of the multiple models are known, 

the means and variances of the natural log of the adjusted model and adjustment factor can be 

calculated by Equations (29 – 32): 

 

  
)ln)(ln()(ln *

1

* yyMPEE
N

i
iim −=∑

=

  (29) 

 

  
2

1

* ))(ln)(ln()(ln yEyMPEVar
N

i
iia −=∑

=

  (30) 

 

  
)(lnln)(ln **

mEEyyE +=   (31) 

 

  )(ln)(ln *
mEVaryVar =   (32) 

 

 The adjustment factors approach produces a statistical distribution of the adjusted model, 

accounting for the variation among the individual models.  This distribution is dependent upon 

the expert opinion that goes into the model probabilities.  The expert opinions are not infallible, 

and thus, an additional degree of uncertainty is introduced to the final distribution due to the 

uncertainty surrounding the model probabilities.   
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 The uncertainty in the model probabilities can lead to multiple problems with the 

adjustment factors approach.  Due to the weighting of the adjustment factors by the model 

probabilities, it is possible for the model probabilities to have significant effects upon the 

adjusted model.  If changes in model probabilities lead to large changes in the adjusted model, 

the adjusted model becomes very dependent upon the model probabilities in addition to the 

variance among the models.  Thus, it is critical to be able to identify the problems in which the 

adjusted model is sensitive to the model probabilities.  To do this, the Modified Adjustment 

Factors Approach was developed in this work.  

 

 The probabilities, 𝑃𝑃(𝑀𝑀𝑖𝑖), assigned to each model are initially based upon expert opinion, 

or an incomplete set of preliminary data.  The uncertainty involved in assigning these 

probabilities comprises the model uncertainty in the problem, and introduces an additional layer 

of uncertainty in to the output distribution, y.  To propagate this uncertainty through to the 

distribution y, the values 𝑃𝑃(𝑀𝑀𝑖𝑖) are treated as uncertain variables with a defined normal 

distribution (Equation (33)). 

 

        ),)(()( exp pmii MPNMP σ=   (33) 

 

 While incorporating the distributions, the probabilities of each of the models must be 

constructed to still satisfy Equation (34). 
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Such that      

 

   1)(0 ≤≤ iMP  (34) 

 

 Due to the constraints of Equation (34), one model probability must be calculated based 

upon the results of the others.  Due to the linear nature of Equation (34), though, if the standard 

deviations of all 𝑃𝑃(𝑀𝑀𝑖𝑖) are equal, the resulting distribution for the final model will still be a 

normal distribution around its mean value with the same standard distribution as the other 

models. 

 

 As 𝑃𝑃(𝑀𝑀𝑖𝑖) is no longer a deterministic measure, its uncertainty must be propagated 

through both adjustment factors approaches (Equations (24 - 27), (29 - 32)). By utilizing a Monte 

Carlo Sampling method, the statistical data regarding the final variable distribution can be 

calculated at individual model probabilities. These data points can then be combined to form a 

final distribution of the metric of interest which incorporates the uncertainty involved in the 

model probability selection.  By comparing this new probabilistic adjustment factors approach 

distribution to the deterministic distribution calculated by a traditional approach, a rough 

sensitivity of the global problem to model uncertainty can be determined.  This sensitivity can 

serve to guide further exploration in the reduction of model uncertainty through additional 

information—specifically detailing the need for posterior model likelihood updating. 

 

 While model-form uncertainty quantifies the discrepancies between models, parametric 

uncertainty quantifies the difference between a model and experimental data.  Predictive 
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uncertainty is a result of the simplifying assumptions that are made in the construction of a 

model, such as an inviscid or incompressible flow assumption.  Although individually, the 

models are deterministic, the presence of predictive uncertainty dictates that they should be 

instead described as distributions, to account for the known errors as a result of simplifying 

assumptions.  To transform the deterministic solution to each model into a distribution, an 

assumption is made that each model’s estimation contains a residual that is identically, 

independently and normally distributed (IDD), (Equation (35)).   

 

  ( )k

IDD

ikiki Nxfy σε ,0~)(−=   (35) 

 

 In Equation (35) iy  represents an experimental result at design variable vector ix  while 

( )ik xf  represents model k’s solution at the same design variable vector.  kσ  represents the 

standard deviation of the normal distribution, as calculated by Equations (36): 
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2)(
σ   (36) 

 

 Now that the residual of each model is defined, the predictive distribution of each of the 

models can be constructed by adding the residual to the deterministic model prediction, as shown 

in Equation (37): 

  ( ) kkk xfMyp ε+= )(|  (37) 
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 Finally, the posterior likelihood of each model, ( )kMDp | , can be calculated by 

computing the joint probability of the experimental data as shown in Equation (38): 

 

  
( ) ( ) ( )∏

=

==
n

i
kikiknk xfypMyypMDp

1
1 ),(||,...,| σ   (38) 

 

 The posterior likelihoods for each model calculated by Equation (38) can then be used to 

update the variable responses predicted by the adjustment factors approaches.  This technique 

allows for further refinement of the model probabilities, )( iMP , if deemed necessary by the 

probabilistic adjustment factors approach.  As refinement requires the addition of experimental 

data, which can be expensive or even infeasible at an early design stage, it is crucial to utilize the 

sensitivity in the probabilistic adjustment factors approach to estimate the merit of adding 

additional data into the calculation of the model likelihoods. 

 

 To demonstrate the application of model uncertainty to an aeroelastic problem, a code 

was written that solves for the flutter velocity of a 2 degree of freedom—pitching and 

plunging—wing subject to unsteady aerodynamics (Figure 31). 
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Figure 31: 2-DOF Wing 

 

 Including the presence of circulatory flow, the lift and the moment about the shear center 

and the moment about the shear center can be calculated by Equations (39) and (40) respectively. 
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 In the above equations, )(kC  represents Theodorsen’s Circulation Function, which 

controls the phasing and amplitude of the lift and pitching moments with respect to the airfoil 

motion.  Theodorsen’s Circulation Function is a complex function consisting of both real and 

imaginary parts.  Multiple surrogate functions exist to approximate Theodorsen’s Function as a 

function of k over the range of k-values experienced by the system (Equations. (41 - 44)): 
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 Where k is the reduced frequency of the system defined by Equation (45) where ω is the 

frequency of oscillation of the airfoil and ∞U is the free-stream velocity 

 

  ∞

=
U

bk *ω

 
(45) 

 

 The real and imaginary part of these four surrogate models vary over an average 

operating range of k’s, as shown in Figure 32. 
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Figure 32: Real (Left) and Imaginary(Right) Components of C(k) for 4 Models 

 
 
 Once a surrogate model of Theodorsen’s Function is decided upon, the flutter velocity for 

this system of equations can then be solved using the theory of unsteady aerodynamics 

(Equations (39 - 40)) and the V-g Method.  However, due to the multiple possible surrogate 

models to use, there is inherent model uncertainty to the problem. Executing the V-g method for 

the sample 2 DOF wing produced results shown in Table 9. 

 

Table 9: Flutter Velocities for Four Models 

 Vf (ft/s) Model Probability 

C1(k) 101.393 0.3 

C2(k) 99.469 0.15 

C3(k) 97.968 0.4 

C4(k) 97.598 0.15 

 

 By assigning a probability to each of the four models, based on expert opinion, an 

adjustment factors approach can be utilized to develop a distribution of the flutter velocity for the 
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2 DOF system.  By using the additive and multiplicative adjustment factors approach detailed in 

the sections above, a normal and lognormal distribution of the flutter velocity can be developed.  

Table 10 shows the means and standard deviations of the figure of merit—in this case the flutter 

velocity of the system—for both the additive and multiplicative adjustment factors approach.  

These distributions are then plotted in Figure 33, showing the probability density functions for 

the flutter velocity of the wing as calculated by both the additive and multiplicative adjustment 

factors approach. 

 

Table 10: Distribution Parameters for Two Methodologies 

 Mean Standard Dev. 

Additive (normal) 99.16515 1.5635 

Multiplicative (lognormal) 99.15289 1.55687 

 

 

 

Figure 33: Normal and Lognormal Plots of Vf 
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 As detailed above, the primary difference between multiplicative and additive adjustment 

factors approaches is the assumption of the final distribution.  While in problems where the 

physical modeling is well understood and the variance between models is relatively small—such 

as the case shown above—the two approaches might result in similar distributions, in cases 

where the initial variance between models is large, the two approaches can produced 

dramatically different result.  When such a case exists, existing knowledge regarding variable 

and model distributions must be used to decide upon an approach, or the two approaches must be 

analyzed individually. 

 

 The next step is to begin to quantify the model uncertainty in the problem, or more 

specifically, the uncertainty associated with the probabilities assigned to each of the models.  By 

utilizing the probabilistic adjustment factors approach detailed in this research, the model 

probabilities, )( iMP , can be assigned a distribution and the effect of their inherent uncertainty 

can be determined.  By defining each of the four model probabilities as a normal distribution 

with a mean of their deterministic value, shown in Table 10, and a uniform standard distribution, 

the effect of model uncertainty can be calculated. With a standard deviation of 0.05 for each 

model probability distribution, the means and standard deviations of the final response output for 

flutter velocity were calculated and can be seen in Table 11. 

 

Table 11: Distribution Parameters for Probabilistic Adjustment Factors Approach 

 Mean Standard Dev. 

Additive 99.1753 1.4915 

Multiplicative 99.1646 1.4867 
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 By comparing the results of the deterministic and the probabilistic adjustment factors 

approach (Table 10 and Table 11), it can be seen that there is less than 0.1% percent difference 

between the two final distribution of flutter velocity for both the additive and multiplicative 

adjustment factors approach.  This demonstrates that the effects of model uncertainty—the 

uncertainty in the model probabilities—are minimal for this problem, and that additional 

quantification of predictive uncertainty, such as by using posterior model probability updating, 

would be of minimal benefit in the reduction of the model uncertainty.  This is valuable 

information for designers, as it provides information regarding the relative benefit and merit of 

conducting possibly expensive experiments to further refine and reduce model uncertainty.  The 

results of this study would show to the designer that although there in uncertainty in the models 

being used, the introduction of new experimental data to the problem would not further reduce 

the model uncertainty. 
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6.0 OPTIMIZATION SCHEME 
 
 
 It is apparent how important of a role uncertainties play in RLV design and it is necessary 

to reduce the amount of risk. This can be accomplished by introducing an optimization scheme 

into the design of the RLV by minimizing risk. In most cases design optimization is thought to 

be based on a deterministic problem. Typically deterministic design optimization formulates the 

problem with an objective function that is to be minimized or maximized bounded by constraints 

which can be seen in Equations (46 - 48). The results to this optimization will consist of a single 

design point that satisfies the constraint conditions. 

 

Minimize: 

  

  𝑓𝑓(𝑥𝑥) (46) 

 

Subject to: 

 

  gi(x) ≤ 0  (47) 

  

  hj(x) = 0 (48) 

 

 In this case, x is the vector of design variables and hj(x) and gi(x) are equality constraints 

and inequality constraints respectively.  
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 Reliability–Based Design Optimization (RBDO) is a valuable evolution in deterministic 

design optimization. Instead of optimizing a problem based on a deterministic problem the 

objective function is based on the probability of failure found using uncertainty quantification 

methods. Reliability-based design optimization accounts for these statistical distributions in the 

analysis through stochastic finite elements using FORM, SORM, evidence theory or many other 

reliability-based methods. RBDO formulates the problem with an objective function that is to be 

minimized or maximized bounded by constraints which can be seen in Equations (49 - 51). 

  

Minimize: 

  

  𝑃𝑃𝑓𝑓  (49) 

 

Subject to: 

 

  gi(x) ≤ 0  (50) 

  

  hj(x) = 0 (51) 

 

 In this case, x is the vector of design variables that can contain uncertainties or can 

influence uncertainties depending on how the problem is established. hj(x) and gi(x) are the same 

as in the deterministic design optimization problem. The objective function is now to reduce the 

probability of failure resulting in a highly reliable design.  
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 Now that a basic understanding of reliability-based design optimization is understood an 

outline of the proposed design optimization of the RLV wing based on aeroelastic flutter 

simulation is explained. Due to the wide presence of uncertainty, as well as the different types of 

uncertainty present, accounting for uncertainty in the problem becomes necessary to perform a 

complete design. Figure 34 illustrates a flow chart of the propagation of uncertainties 

incorporated in an RBDO algorithm. In the RBDO section three methods will be explored; 

gradient-based RBDO, practical swarm optimization, and a proposed method of adaptive particle 

swarm optimization.  
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Figure 34: Vehicle Design Environment Framework 



77 
 

 

 

6.1 Reliability-Based Design Optimization Incorporating Evidence Theory 
 

Reliability-Based Design Optimization (RBDO) techniques are developed to address the 

analytical guarantee of the performance of a structural system. In this section, uncertainty 

quantification using evidence theory demonstrated in the previous sections is implemented into 

design optimization. To address the discontinuity of the measurements (BEL and PL), a 

supplementary measurement, plausibility decision, described in section 5.3, will be used. The 

flow chart of gradient-based design optimization is demonstrated in Figure 35.   

 

 
  

Figure 35: Gradient RBDO Flow Chart 
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Figure 36: Four-Bar Truss Structure 

 
 

 As stated in section 5.3.1 the four-bar truss structure (Figure 36) will be revisited to 

investigate an RBDO analysis. To complete the design optimization portion of the analysis 

gradient information is needed to approximate the constraint function because no closed form 

equation can be derived when evidence theory is implemented. A surrogate model of the 

constraint was developed using TANA approximation (explained in section 5.2.1.) This 

approximation is only valid in short intervals the process outline in Figure 35 and requires 

iterations to get an accurate representation of the function.  

 

The problem formulation for this example is as follows:  

 

Minimize: 

  

  𝑓𝑓 = 3𝑥𝑥1 + √3𝑥𝑥2 (52) 
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Subject to: 

 

  𝑔𝑔1 = 3 − 18
𝑥𝑥1
− 6√3

𝑥𝑥2
≥ 0  (53) 

  

  𝑔𝑔2 = x1 − 5.73 ≥ 0 (54) 

 

  𝑔𝑔3 = x2 − 7.17 ≥ 0 (55) 

 
 
  𝑑𝑑𝑟𝑟𝑓𝑓 − 𝑃𝑃𝑙𝑙𝑑𝑑𝑅𝑅𝑑𝑑  𝑔𝑔1 𝑠𝑠𝑢𝑢𝑑𝑑𝑑𝑑𝑅𝑅𝑠𝑠𝑠𝑠 ≥ 0  (56) 
 

 
 Where 𝑑𝑑𝑟𝑟𝑓𝑓 is the desired reliability factor for the constraint g1.  𝑑𝑑𝑟𝑟𝑓𝑓 is chosen by a 

designer based on how reliably they want the structure. Table 12 contains the results from the 

gradient-based RBDO using Benanazer’s plausibility decision approximation. As seen in the 

table there are a range of optimizations, in which the 𝑑𝑑𝑟𝑟𝑓𝑓 was altered. The results show that 

since this problem was constrained with  PL_dec rather than BEL or PL that the desired 

reliability factor was achieved in each analysis.  Notice as the 𝑑𝑑𝑟𝑟𝑓𝑓 is increased (meaning 

reliability of the structure is increasing) the higher the objective function value is. This 

demonstrates a more reliable structure cost more materials then a less reliable one.  
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Table 12: Four-Bar Truss Reliability Design Optimization Results 

f x1 x2 drf PL_dec BEL PL 
43.52313 9.19752 9.19752 0 0 0 0.015 
43.99996 9.335168 9.234402 0.01 0.01 0 0.0255 
44.90086 9.423517 9.601514 0.1 0.1 0.015 0.253 
45.26616 9.627671 9.458821 0.2 0.2 0.055 0.6095 
45.44449 9.541425 9.711154 0.3 0.3 0.175 0.6095 
45.62129 9.468467 9.939728 0.4 0.4 0.175 0.6195 
45.78633 9.580633 9.839363 0.5 0.5 0.175 0.91 
46.03484 9.682678 9.807335 0.6 0.6 0.53 0.917 
46.35316 9.780256 9.822107 0.7 0.7 0.54 0.917 
46.67998 9.785824 10.00115 0.8 0.8 0.54 1 
47.18891 9.962875 9.988322 0.9 0.9 0.9 1 
115.6673 23.78244 25.58815 0.95 0.95 0.9 1 
152.1028 27.18551 40.57945 0.99 0.99 0.9 1 
159.0244 26.79981 45.39415 1 1 1 1 

 
 

6.2 Particle Swarm Optimization 
 
  

 Vehicle design is an inherently non-linear multi physical problem with the presence of 

continuous, mixed, and integer variables.  To analyze the relative merit of a particular design, 

some degree of simulation required, and the time required for this simulation varies with the 

fidelity of the analysis required.  In addition, the determination of design variable gradients is not 

analytically possible when simulation beyond basic static finite elements is employed.  

Traditional gradient-based optimization methods rely on the input of design variable gradients, 

which would need to be determined using a finite-differencing scheme or analytical gradients—

which are unavailable or difficult to obtain for many complex simulation analyses. Due to the 

relatively long simulation time required for an analysis, utilizing a finite differencing scheme can 

quickly become computationally restrictive.  In addition, gradient-based methods perform very 
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poorly in highly non-linear problems, finding only local optima simply as a function of the initial 

design point.   

 

 Traditional heuristic methods, such as particle swarm optimization (PSO) help to 

alleviate some of these design problems [45].  PSO (Equations (57, 58)) is a heuristic method 

that will converge upon a global optimum and does not require gradient information at particular 

points.   

 

  𝑣𝑣𝑖𝑖𝑘𝑘+1 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑘𝑘 + 𝑑𝑑1𝑟𝑟1
𝑝𝑝𝑖𝑖−𝑥𝑥𝑘𝑘𝑖𝑖

∆𝑡𝑡
+ 𝑑𝑑2𝑟𝑟2

𝑝𝑝𝑘𝑘𝑛𝑛−𝑥𝑥𝑘𝑘𝑖𝑖

∆𝑡𝑡
 (57) 

 

  𝑥𝑥𝑖𝑖𝑘𝑘+1 = 𝑥𝑥𝑖𝑖𝑘𝑘 + 𝑣𝑣𝑖𝑖𝑘𝑘+1∆𝑡𝑡  (58) 

 

 However, as with most heuristic algorithms, PSO requires numerous function 

evaluations—often within a very small region of the design space—to converge upon an optimal 

point.  In addition, due to the large number of user-controlled parameters in the optimization, the 

algorithm can perform much differently depending on the values of those inputs, which are based 

on the user’s knowledge of the system at hand.  Due to the lengthy simulation time required in 

vehicle design evaluations; this once again becomes computationally restrictive.  When 

uncertainties within the design problem are introduced, the computational cost becomes even 

more restrictive, and traditional optimization methods become costly to the point of irrelevance. 

  

 In order to optimize the design of a proposed vehicle or vehicle component, these 

uncertainties listed above must be accounted for and an efficient algorithm must be able to 
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converge upon an optimum in an acceptable amount of time. With the introduction of 

uncertainties into the problem, the number of function evaluations required can increase 

dramatically. Ko et al [46] has previously used particle swarm to solve a trajectory optimization. 

Dimou et al also explored reliability-based optimal design of truss structures using particle 

swarm optimization [47]. Thus, a method must be implemented for the optimization routine that 

minimizes the number of function evaluations required while still converging upon an optimal 

solution.   

  

 The problem executed with this study is a closed form problem to stand as an initial 

surrogate for an actual vehicle design problem. This was done to limit the computational time 

required for an initial study, as the number of simulations required for each optimization can 

reach the thousands and a complete initial design space exploration was executed—meaning that 

nearly one million simulations would have been required for this initial study.  The optimization 

problem executed for this was the “Egg Crate Function” (Equation (59)); a highly non-linear 

problem with multiple optima in a small region that is often used in the literature to explore the 

relative merit of optimization routines in highly non-linear design environments.    

 

Minimize: 

  

  𝑓𝑓(𝑥𝑥) = 𝑥𝑥1
2 + 𝑥𝑥2

2 + 25(sin(𝑥𝑥1)2 + sin(𝑥𝑥2)2)  (59) 
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Subject to: 

 

  −2π ≤ x1 ≤ 2π  (60) 

  

  −2π ≤ x2 ≤ 2π (61) 

 

 To initiate the design space, Latin Hypercube Sampling was used to span the entire 

design space with initial sampling points and ensure faster convergence.  Figure 37 below shows 

a plot of the function and a sample iteration history for one of the optimizations of the “Egg 

Crate Function”. 

 

 
Figure 37: “Egg Crate Function” and Sample Iteration History 
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 For this closed-form optimization problem, a design space study was conducted to 

determine the number of function evaluations—which directly correlate to the number of 

simulations required to analyze a vehicle’s performance—to converge upon an optimal solution.  

This included a study on the effect of the different parameters in particle swarm optimization to 

see how they affect the efficiency of the algorithm. For this study, ten different optimizations 

were executed at a baseline parameter set to establish an initial performance value Table 13.  

Then, individually, each controllable parameter was changed though the full spectrum of values 

to determine which parameters had significant effects on the efficiency of the algorithm.  Plots of 

the number of simulations required for convergence versus the change in parameter values can 

be seen in Figure 38, Figure 39, Figure 40, and Figure 41.  In addition, for the purpose of this 

initial study, only first-order variable interactions were explored. 

 
Table 13: “Egg Crate Function” Optimization results at standard parameters 

Num_part Num_neigh fw w c1 c2 y0 No. Fun. Calls 
20 5 0.975 0.9 1.5 1.5 4.221E-08 940 
20 5 0.975 0.9 1.5 1.5 4.158E-05 960 
20 5 0.975 0.9 1.5 1.5 8.126E-05 900 
20 5 0.975 0.9 1.5 1.5 7.949E-06 1000 
20 5 0.975 0.9 1.5 1.5 6.730E-04 940 
20 5 0.975 0.9 1.5 1.5 3.454E-04 1060 
20 5 0.975 0.9 1.5 1.5 3.340E-05 1040 
20 5 0.975 0.9 1.5 1.5 5.925E-04 980 

      2.219E-04 977.5 
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Figure 38: Number of Neighbors vs. Function Evaluations 

 

 
Figure 39: Individuality and Socialability Factors vs. Function Evaluations 
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Figure 40: Number of Particles vs. Function Evaluations 

 

 
Figure 41: Convergence Value vs. Function Evaluations 
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 It can be seen from these results that with traditional particle swarm optimization, some 

of the input parameters into the algorithm have dramatic effects upon the number of functions 

required for convergence.  In addition to the data, the quality of the solutions that the algorithm 

converged to with different parameter values was recorded, but it was found that the quality of 

the solution was only a function of the convergence criteria, and not of any additional parameters 

in the problem. 

 

 After identifying significant input parameters in the conventional particle swarm 

algorithm, a modification was made to the algorithm in attempts to reduce the number of 

simulations required for convergence while still maintaining the desired level of accuracy.  This 

method, called Adaptive Particle Swarm Optimization (A-PSO), is detailed in section 6.3. 

 

6.3 Adaptive Particle Swarm Optimization (A-PSO) 
 

 As shown in the previous section, the computational cost for particle swarm optimization 

can be great.  For a simple two-dimensional problem, it was shown that up to 1,000 simulations 

could be required for convergence, and this is before any degree of uncertainty is introduced into 

the problem—which as shown in previous sections could increase the number of simulations by 

a factor of 20 for a simple two dimensional problem.  In addition, as greater dimensionality is 

added to the problem, these numbers scale exponentially; resulting in uncertain designs with only 

5-6 design variables requiring upwards of 1,000,000 simulations for convergence using 

traditional particle swarm optimization.  With detailed simulations, this number of required 
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simulations becomes prohibitively costly, and an alternative method must be found to reduce this 

number of simulations to a more manageable number. 

 

 While particle swarm optimization requires a large number of function evaluations to 

converge upon an optimal solution, it can be seen that a large number of these function 

evaluations occur within a small region of the design space.  By implementing surrogate models 

in these small regions of the design space, the number of actual function evaluations can be 

dramatically reduced.  However, when using surrogate modeling, there is an added error due to 

the inaccuracy of the model being implemented.  In addition, if these models are considered 

valid over large regions of the design space, the error is increased.  Thus, it can be seen that the 

small region of the design space that a surrogate model is considered valid, the more accurate it 

generally is.  However, if the entire design space is simply partitioned into multiple small regions 

to be modeled with surrogate models, the number of simulations required to form these models 

would once again be large and unwieldy.  Thus, what was done was to initiate traditional particle 

swarm optimization.  The design space is then divided into several large regions to be modeled 

using a second order response surface model. Equation (62) 

 

  𝑌𝑌𝑗𝑗 = 𝛽𝛽𝑓𝑓 + ∑ 𝛽𝛽𝑖𝑖𝑋𝑋𝑗𝑗𝑖𝑖 +𝑛𝑛
𝑖𝑖=1 ∑ 𝛽𝛽𝑖𝑖𝑋𝑋𝑗𝑗𝑖𝑖 2 +𝑛𝑛

𝑖𝑖=1 ∑ ∑ 𝛽𝛽𝑖𝑖𝑝𝑝𝑛𝑛
𝑝𝑝𝑖𝑖< 𝑋𝑋𝑖𝑖𝑗𝑗 𝑋𝑋𝑗𝑗𝑝𝑝 + 𝜀𝜀𝑝𝑝  (62) 

 

 For the next iteration in the optimization, the function evaluations can then be 

approximated by the response surface models, which are considered valid within their region.  

Then, in order to add additional data into the models, a finite number of points (an additional 

parameter added to the traditional PSO algorithm) are randomly selected for full evaluation.  
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These points are fully evaluated—in the closed form problem this is rather simple, but in a 

simulation-based problem, this would represent additional simulations—and this new data is then 

used in conjunction with the existing points to update the surrogate models.  When a region of 

the design space defined by a model becomes over-populated with function evaluations, the 

space is then partitioned into smaller regions, reducing the bounds on the models within that 

region.  This can be best illustrated in Figure 42. 

 

 
Figure 42: Model Design Space Reduction in A-PSO 

     
 
 
 This design space reduction is designed so that as the optimization algorithm converges 

upon a solution, the surrogate models become smaller and more numerous in the area of multiple 

particles, which corresponds to the location of an optimal solution.  Thus, in this method, 

previous data regarding function evaluations is not wasted, but used to form surrogate models to 

aid in the convergence of the algorithm.   
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7.0 FAST WING RESULTS 
 

7.1 Aleatory Uncertainty Investigation 
 

 To further investigate FORM and SORM for RLV design an aeroelastic model was 

analyzed with structural aleatory uncertainties. Using the model described in the chapter 4 an 

aeroelastic flutter uncertainty quantification analysis was investigated (Figure 43).  

 

 

 

Figure 43: NASTRAN FEA Wing Model for Aleatory Risk Quantification Analysis 

 

 The two uncertain variables that were included in this analysis were selected to be the 

skin thickness and cross-sectional area of the wing. These variables are uncertain due to complex 

manufacturing process of composite materials. The parameters used for the atmospheric 

conditions in this analysis represent the vehicle entering the atmosphere during the trajectory at 

subsonic levels. The limit state allowed the flutter dynamic pressure to reach 2000 psf before it 



91 
 

was considered as a failure. The uncertain variables were represented by normal distributions. 

The means and standard deviations of the skin and spars cross-sectional area were μ=.04 σ=.005 

and μ=.2 σ=.02 inches respectively. The results for the aleatory uncertainty quantification of the 

aeroelastic model are located in Table 14. 

 
Table 14: Aleatory Uncertainty Quantification Results Including Aeroelastic Analysis 

 Total Number of 
Function Calls 

Total Computational 
Time Pf 

% Difference 
from MC 

FORM with adaptive 
approximations 18 22 seconds 0.05075 .132 

Breitung's Formulation 23 29 seconds 0.05082 .006 

Tvedt's Formulation 23 29 seconds 0.05084 .045 

Koyluoglu's Formulation 23 29 seconds 0.05066 .309 

Monte Carlo 150,000 33.33 hours 0.05082 0 

 

7.2 Epistemic Uncertainty Investigation 
 

 This study focuses on a reliability analysis of an RLV flutter speed. In past aerospace 

designs the vehicles were modeled without considering uncertainty which may have led to the 

Space Shuttle Challenger and the more recent Space Shuttle Columbia disasters. To quantify the 

uncertainties a more robust design can be implemented to the space program to avoid 

catastrophic events.  
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 Epistemic uncertainty is a type of uncertainty where little information is known regarding 

the variable, and it would be inaccurate to assume some sort of distribution.  Only epistemic 

uncertainties will be considered in this investigation. This problem will be formulated using non 

probabilistic methods since evidence theory is being incorporated. The uncertain variables are 

selected in this problem based on the little information known about the variable and the 

importance they play in the vehicle design. For example the composite skin on the RLV where 

two samples of the same composite can have completely different properties. This is related to 

the orientation of the layers. There is not enough information to construct a pdf on the orientation 

of each thus the variable is epistemic. Since RLV design consist of so many types of variables a 

limit state must be declared in order to complete an uncertainty analysis. 

  

 Flutter will be used as the limit state of this problem. In complex structures where both 

the aerodynamics and the mechanical properties of the structure are not fully understood the 

aeroelastic flutter phenomenon described in the previous section can be quantified with 

uncertainties. As seen in Figure 44 a demonstration of an uncertainty bound is added to the 

flutter assessment. This bound shows that if uncertainty is incorporated to an analysis it can cross 

the flutter margin causing catastrophic failure.  
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Figure 44: Aeroelastic Analysis with Uncertainty Bound  

 

 The variables that were chosen for this problem are based on two parts of the aeroelastic 

analysis to give diversity to the problem to demonstrate the coupling of uncertainties between the 

aerodynamic and structural model. The uncertainties come from the composites in the structural 

model and the atmospheric conditions in the aerodynamic model. As seen in Figure 45 on the left 

is the makeup of the composite material for the skin of the RLV and the right is the equation to 

calculate the air density. Composites have many uncertainties associated with them because they 

are hard to reproduce consistently. The uncertainties in the composite for this particular problem 

come from the thickness which can vary of the composite as well as the orientation of the third 

and fourth layer. These are considered epistemic uncertainties because there is not enough 

information on this type of composite to construct a pdf. The second group of uncertainties 

comes from the air density. The three uncertain variables associated with air density are the air 

pressure, gas constant, and temperature. The gas constant variable was selected to simulate 
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moisture in the atmosphere. The temperature and pressure were chosen because air pressure has 

a large dependence on them. The atmospheric conditions are thought to be epistemic uncertainty 

because there is not enough information to accurately construct a pdf without introducing more 

uncertainty into the problem. 

 

  

Figure 45: Uncertainties for six variables 

 Figure 46 represents the three uncertain variables BBA’s for the composite uncertainties 

and Figure 47 signifies the three uncertain variables BBA’s in the atmospheric uncertainties. In 

this problem three experts were asked their opinion on each variable, at which interval they 

thought the most likely occurrence of uncertainty would occur. Each interval was then weighted 

on the expert’s opinion. Figure 46 and Figure 47 illustrates each expert’s opinion in which for 

the variables layer thickness and temperature all three opinions were used. In the other four 

variables one expert did not express enough knowledge in that particular subject and the variable 

was omitted. 
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Composite  Uncertainties 

 

 

 
Figure 46: Composite Uncertainties Basic Belief Assignments 

 
 

Atmospheric Uncertainties 

 

 

 
Figure 47: Aerodynamic Uncertainties Basic Belief Assignments  
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 As mentioned in the two variable demonstration case, the limit state for the six variable 

problem is also 2000 psf. The results for the six variable problem are depicted in Figure 48. The 

reliability of the RLV falls between the bounds BEL and PL. This is expected since the RLV is 

initially designed to have a high relibility. The bounds can be improved to find a more accurate 

reliability and are explored in the next study. 

 
  𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴) = �𝑚𝑚(𝐶𝐶)

𝐶𝐶⊂𝐴𝐴

 𝑃𝑃𝐵𝐵(𝐴𝐴) = � 𝑚𝑚(𝐶𝐶)
𝐶𝐶∩𝐴𝐴≠0

 

BEL = 0.925  PL = 1.0  
Figure 48: Six Variable RLV Problem Results 

 
Simulations  3456 

CPU time per simulation  30 sec 

Total Time  28.8 hours 
Figure 49: Simulation Time Six Variable RLV Problem 

 

 Figure 49 illustrates the efficiency of evidence theory. Although the method makes no 

assumptions and gives an accurate bound of the limit state the computational time is expensive. 

The more variables with uncertainty the more complex the problem becomes. As seen in the 

figure it took 28.8 hours to execute the analysis when each of the simulations took 30 sec to 

complete. This is why a model must have a short execution time otherwise the analysis would 

take years to complete. One possible solution would be to make a surrogate model of the 

aeroelastic flutter analysis such as a response surface which would look act like a closed form 

solution, resulting in a lower computational time. The problem with a surrogate model is it 

would introduce uncertainty to the problem which is trying to be avoided when using evidence 

theory.  
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 The pay off of using evidence theory compared to a probabilistic method is no new 

uncertainty was added to the problem by assuming a pdf for the uncertain variables. If the wrong 

pdf was assumed and a probabilistic method such as first order reliability method or second order 

reliability method was used the reliability of the analysis could have deviated from the actual 

reliability causing misleading information. 

 

 There are two ways to improve the results of this type of analysis one being improving 

the BBA structures and the second by introducing the concept of Plausibility decision (PL_dec). 

If the plausibility belief bound is too large one solution is to further discretize the problem. This 

can be accomplished by improving the BBA structures. To improve the BBA’s one can ask more 

experts, complete more experiments, or assume the expert opinions are evenly distributed and 

split them up into more pieces. Improving the BBA’s structure will shrink the bound of the belief 

and plausibility giving a more understood problem.     

 

 One concern for an analysis with flutter is what if flutter does not occur during one of the 

iterations. Evidence theory does not use iterations so one simulation does not depend on the next. 

This works out very nicely when a simulation does not flutter. It can be considered as a 

successful case and the analysis could continue without penalty. For the current demonstration 

flutter occurred at every simulation  

 

 

 



98 
 

 

7.3 Reliability-Based Design Optimization Epistemic Uncertainty Investigation  
 

Now that evidence theory has been demonstrated in the previous section it is apparent the 

probability of success can be improved. In this study an RLV wing structure will be optimized to 

reduce the weight while increasing the probability of success based on a flutter limit state.  

 
 The first step in the problem is to identify uncertainties. As mentioned before composite 

materials have uncertain properties and are hard to manufacture consistently. In the previous 

section the uncertainties came from the orientation of the layers of the composites that make up 

the skins of the wings. In this study only the composite thickness on the wings skin will be 

examined. Figure 50 contains images of the three sets of skin thicknesses that are being 

examined. The blue section will be referred to as the wing tip skin, the red portion will be 

recognized as the top skin, and the green segment will be identified as the bottom skin.  
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Figure 50: Variability Design of Skin Thickness Variables 

 
This study also includes atmospheric density as an uncertainty. Like before the 

atmospheric density is an epistemic variable because there is not enough information to 

determine a well defined pdf. Instead of splitting the air density into an equation and three 

separate uncertain demonstrated in the previous section it will consist of only one uncertainty. 

This was done to reduce the computational time because now the problem is an iterative process 

and each additional uncertain variable increases computational time dramatically when 

employing evidence theory. The BBAs for the four uncertain variables can be found in Figure 
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51. Like before in the RBDO using evidence theory example the three skin thicknesses are 

distributed in percentages because not only will the skin thicknesses be the uncertainties in the, 

they will also be the design variables in which the problem is optimized.  

 
 
 

 

 

 

 
Figure 51: BBAs for the Wing structure used in the RBDO study 

 
 

 The BBAs were developed based on three expert opinions. Like in the evidence theory 

study of the RLV wing the limit state of the uncertainty quantification algorithm is flutter. While 

completing the evidence theory analyses during the RBDO, if a flutter dynamic pressure exceeds 
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2000 psf, it is considered a failure. The goal of the optimization is to minimize the weight 

(objective function, Equation (63)) of the wing while keeping a plausibility decision above .98. 

Leading to the problem being defined as: 

 
Minimize: 
 
  𝑊𝑊 = ∑ 𝜌𝜌𝑖𝑖𝑉𝑉𝑖𝑖𝑛𝑛

𝑖𝑖=1  (63) 
  
   
Subject to: 
 
  

  𝑔𝑔1 = flutter limit state(2000psf) ≥ 0 (64) 

 
 
  𝑑𝑑𝑟𝑟𝑓𝑓 − 𝑃𝑃𝑙𝑙𝑑𝑑𝑅𝑅𝑑𝑑  𝑔𝑔1 𝑠𝑠𝑢𝑢𝑑𝑑𝑑𝑑𝑅𝑅𝑠𝑠𝑠𝑠 ≥ 0  (65) 
 
 

Where n is the number of elements that consist of the skin section. iρ  and iV  are the 

mass density and volume, respectively, of the ith structural element participating in the 

design. 𝑑𝑑𝑟𝑟𝑓𝑓 is the desired reliability factor which in this case is .98.  

 

Table 15 shows the initial and optimized results for the RLV wing optimization. The 

optimization resulted in an increase in PL_dec and Belief while reducing the weight of the wing. 

The optimization converged at 15 iterations. Figure 52 shows the computational time invested in 

this RBDO. 

 
Table 15: RBDO Wing Thickness Results 

  
Wing-Tip  
skin (in) 

Wing-top  
skin (in) 

Wing-Bottom  
skin (in) 

Weight  
(lb) PL_dec PL BEL 

Initial  0.0576 0.144 0.0536 769.78 0.9175 0.99 0.786 
Optimized 0.0488 0.132 0.0632 766.5072 0.98 0.99 0.8242 
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Iterations  15 

CPU time per Iteration  8 hours 

Total time  120 hours 
Figure 52: Simulation Time RBDO Analysis 
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8.0 DISCUSSION AND CONCLUSIONS 
 
 
 
 The technical effort conducted in this task developed methods relevant to the reliability-

based structural design of an RLV. The first step completed in the analysis of the RLV wing was 

a trajectory optimization for a rocket-back mission, where it was discovered that critical points in 

the trajectory needed further investigation. From the mission’s trajectory, critical points were 

selected based on maneuverability and rapid changes in atmospheric conditions.  

 

 To evaluate these critical points, a finite element model was needed. The wing model was 

based on representative dynamic characteristics of the RLV configuration. Since no physical 

model of the RLV wing is available, the created wing model was validated based on the original 

model using two methods of characteristics validation. The two methods used were the modal 

assurance criterion for mode shape comparisons and frequency comparison analysis. From these 

analyses we concluded that the two models compared are in sufficient agreement that the created 

model can be used as a surrogate. Along with the structural model an aeroelastic model was 

constructed in which a series of flutter analyses were conducted. These analyses were based on a 

flight envelope during the launch phase of the trajectory. This regime was selected because the 

RLV experienced the most dynamic pressure during this phase. From this study it was 

determined that the critical Mach number relating to the flutter speed was at Mach 1.1. 

 

 Once the model was validated and finalized, uncertainty quantification methods were 

explored. Three sources of uncertainty were explored in this research: aleatory, epistemic, and 

model-form. It was discovered that when quantifying aleatory uncertainties, the second-order 



104 
 

reliability method produces better results than the first-order reliability method at the cost of 

more computational time. Epistemic uncertainty was analyzed using evidence theory where 

uncertain variables with limited information were quantified. This resulted in bounds of actual 

response.  A new metric known as plausibility decision was introduced to estimate the reliability 

within the bound and to obtain gradient information. Three methods of plausibility decision were 

investigated, and Benanzer’s approximation was determined to be the most fitting for an 

evidence theory analysis with more than two variables. This effort also produced a new method 

to quantify model-form uncertainty. This type of uncertainty is present when more than one type 

of model is available for an analysis, such as finite element models with different fidelities or 

using different computational methods.  

  

 The next step in this investigation was incorporating uncertainty quantification into the 

design optimization. Gradient-based reliability-based design optimization incorporating evidence 

theory was utilized. It was discovered that in reliability-based design problems, gradient 

information is extremely computationally expensive. The computational cost arises from finding 

the gradients where the number of simulations needed in the reliability analysis is the number of 

variables plus one.  An adaptive particle swarm optimization program was developed to reduce 

this computational time. 

 

 Finally, three separate analyses were completed on the RLV wing incorporating 

uncertainties. The first was an aleatory uncertainty quantification incorporating structural 

uncertainties and an aeroelastic flutter limit state. This analysis discovered that the FORM and 

SORM methods produced results with nearly the same reliabilities. This indicates that the limit 
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state is nearly linear when only structural parameters are used in an aleatory investigation. The 

second analysis conducted was an evidence theory uncertainty quantification analysis, where the 

uncertainties were found in atmospheric conditions and composite materials. For this study six 

uncertain variables were used, three of which came from structural uncertainties and three from 

atmospheric uncertainties. Flutter dynamic pressure was used as the limit state. This 

investigation concluded that when epistemic uncertainties were considered a wider reliability 

bound was obtained. A wider bound implied the need for additional information about uncertain 

parameters. Although a high reliability was determined, it was still necessary to perform a risk 

minimization optimization. The third analysis conducted was a gradient-based reliability design 

optimization of the RLV wing including aeroelastic uncertainties. The uncertain variables were 

three sections of skin thicknesses as well as air density. The design variables in the optimization 

were the three skin sections thicknesses, where the objective function was to minimize weight. 

The optimization of the RLV wing demonstrated that a reduction in weight as well as an increase 

in reliability could be obtained through optimal modification of thickness distributions.  
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